

EnvEurope

Environmental quality and pressures assessment across Europe: the LTER network as an integrated and shared system for ecosystem monitoring

2010 - 2013 LAYMAN'S REPORT

EDITORS:

Alessandra Pugnetti¹ and Mark Frenzel²

WITH THE CONTRIBUTIONS OF:

Cristian Mihai Adamescu³, Marco Bascietto⁴, Alessandro Campanaro⁵, Paolo Colangelo⁵, Paola Focaccia¹, Giorgio Matteucci⁴, Johannes Peterseil⁶, Mariangela Ravaioli¹, Daniela Sani⁷

ACKNOWLEDGMENTS:

We acknowledge Andrew Sier ⁸ and Loredana Alfarè¹ for their precious revision of the text language and contents

- 1 National Research Council Institute of Marine Sciences, Italy
- 2 Helmholtz Centre for Environmental Research UFZ, Germany
- 3 University of Bucharest, Romania
- 4 National Research Council Institute of Agro-Environmental and Forest Biology, Italy
- 5 National Forest Service-National Centre Forest Biodiversity "Bosco Fontana" of Verona and University of Rome "La Sapienza"- Dept. Biology and Biotechnology, Italy
- 6 Environment Agency Austria, Austria
- 7 ASTER, Italy
- 8 Centre for Ecology & Hydrology, United Kingdom

CONTENTS


EnvEurope in a nutshell	2
What the project EnvEurope is about	4
The toolbox for effective work and networking: demands from LTER-Europe and solutions provided by EnvEurope	6
What and how to measure?	7
A framework for selection of parameters	7
A hitlist of top parameters?	8
Making parameters and methods available: the interactive tool ECOPAR	9
Putting concepts into practice: testing the Ecological Integrity approach in the field	10
How to deal with data? The need for overarching Information Management	12
Making available information about data	12
Benefits from reduced diversity: controlled vocabularies	14
Towards greater accessibility and sharing of datasets	14
Analysis of LTER data: catching ecosystem changes	15
Prove of concept: do LTER data hold the promise?	15
Addressing environmental "grand issues" through LTER data	15
Can LTER be connected to the space?	19
Is there "life after LIFE+"? The living heritage of EnvEurope	20

EnvEurope in a nutshell

The EnvEurope project was approved under the Environment Policy and Governance component of the European Union's LIFE+ programme, addressing the theme "Strategic Approaches". Priority areas of action for this theme were (a) the strengthening of the scientific base for environmental policy making; (b) contributing to the implementation a Shared Environmental Information System (SEIS¹) and (c) supporting the development of Copernicus (formerly called Global Monitoring for Environment and Security, GMES²). Within this LIFE+ context, EnvEurope was conceived in response to ecological research challenges in the European Long-term Ecosystem Research (LTER-Europe³) site network. EnvEurope was the first project completely dedicated to the LTER-Europe network. The project's tasks were to:

- harmonize LTER-Europe network activities
- streamline standard procedures required to support LTER scientific research
- increase the visibility of LTER-Europe as a reference network for policy makers and environmental managers at the European level.

EnvEurope involved 11 LTER-Europe countries, 17 partners and 67 LTER sites (around 20% of LTER-Europe sites), shared among terrestrial sites, continental and transitional waters, and marine sites.

¹ http://ec.europa.eu/environment/seis/

² http://www.copernicus-masters.com/; http://land.copernicus.eu/

³ http://www.lter-europe.net/

The project was organized into several Actions addressing key project issues:

- Development of a common set of key long-term ecological parameters and measurement protocols for use in the field
- Collection of data in the field in a coordinated, site-based exercise
- Management of information and datasets
- Investigation of shared scientific hypotheses using case studies aiming at long-term data analysis
- Network design aimed at producing better information about the key components of LTER-Europe (sites, datasets, people, etc.).

What the project **EnvEurope is about**

The main subject of EnvEurope These sites have been established was LTER, or Long-Term for multiple reasons and are used Ecosystem Research and for both research and monitoring Monitoring (**BOX 1**).

in our rapidly changing world: methods. climate change, land and sea This has resulted in a huge exploitation, and global trade amount and diversity of LTER are dramatically affecting the data connected to many different environment and altering e.g. the themes. ecosystem services we depend EnvEurope was conceived as a on, like provision of food and means addressing this complexity, water, air and water quality, and by harmonizing and improving the aesthetic value of a landscape. LTER-Europe's operations, and We need a sound base of long- at the same time dealing with term ecological observations and several of the network's key data in order to detect current aims. The project had a crosschanges in ecosystems, develop domain approach, using 67 scenarios for the future and adapt LTER-Europe sites covering natural resource management terrestrial, wetland, continental practices.

LTER is organised in site networks countries. at the national, regional and the The project involved 17 global level (**BOX 2**). The regional network LTER- institutions as external partners, Europe is quite complex. It is composed of a high number of of LTER-Europe sites. LTER sites representing different ecosystem domains (terrestrial, freshwater, marine).

leading to a large heterogeneity LTER is especially important of parameters and measurement

water, transitional and marine ecosystems in 11 LTER-Europe

beneficiaries and many other all committed to the management **BOX 1.** Long-term Ecological Research (LTER) and Monitoring

Long-term Ecological Research (LTER) and Monitoring is based on gathering and analysis of multi-decadal ecological observations and data, at an appropriate temporal scale to support understanding and management of the environment. Many components of ecosystems are studied including living organisms and non-living components like air, water, mineral soil and sediments. LTER has both a question - (or problem-) driven research approach and a strong monitoring component. Thus LTER provides essential information about how ecosystems respond to global change: LTER data can be used to describe the state of an ecosystem, how the ecosystem may be changing, what may be

driving that change, and the probability of the ecosystem shifting to another state, such as a higher or lower ecological quality.

Our main tasks in the project concerned:

- Establishing a conceptual framework allowing • Producing better information comparability and ranking of ecological parameters and data gained at LTER sites across Europe
- Testing the LTER network as a harmonized set of sites. through measurements in the field of a broad spectrum of parameters and environmental methodologies
- LTER-Europe
- studies aimed at long-term programme.

metadata and data analysis. involving as many sites as possible

about the organization of LTER-Europe, to improve information flow and increase the visibility of LTER-Europe as a reference network for scientists, policy makers and environmental managers at the European level

quality indicators with common Within these main tasks, EnvEurope was structured to also • Gathering in a structured play a role in the conceptual and way, managing and making operative context of the Shared available information (the so- Environmental Information called "metadata") about sites, System (SEIS) promoted by the persons and datasets across European Commission, and to initiate collaborations with • Defining and providing tools Copernicus (formerly GMES), a and recommendations for joint initiative of the European LTER dataset reporting and Commission and European sharing, and for integrated data Space Agency. The permanent management in the domain of LTER-Europe site network may long-term ecological research indeed represent a valuable • Investigating scientific system for in situ validation of hypotheses within the LTER satellite data, thus supporting the community, through case implementation of the Copernicus

BOX 2. The LTER networks

LTER networks consist of sites covering different ecosystems, each with research and monitoring facilities. Such networks are usually organised at a national level. The International LTER⁴ network (ILTER) was set up in 1993 by the US LTER⁵ and it was driven by the need to collaborate at local, regional and national levels through sharing and integrating knowledge and data, creating synergies and delivering scientifically sound results to decision makers and the public. At the European level, the LTER-Europe networking process started in 2004, fostered by the Network of Excellence "ALTER-Net" ("A Long-term Biodiversity, Ecosystem and Awareness Research Network). As of 2013. LTER-Europe comprises 21 formal national LTER member networks and more than 300 LTER sites in continental Europe and Israel.

⁴ http://www.ilternet.edu/ ⁵ http://www.lternet.edu/

The toolbox for effective work and networking: demands from LTER-Europe and solutions provided by EnvEurope

DEMANDS FROM LTER-EUROPE	SOLUTIONS OFFERED BY ENVEUROPE
How to harmonize the LTER parameters?	Conceptual framework of Ecosystem Integrity Ranking of top LTER parameters Testing in the field of Ecological Integrity parameters
How to make parameters and methods available?	Interactive tool " ECOPAR ": collection of abiotic and biotic indicators and internationally established methods
How to manage LTER datasets?	Organization of and access to LTER information: DEIMS tool for metadata delivery, search and view Establishment of a common controlled vocabulary for machine-based retrieval: The thesaurus "EnvThes"
How to share and make accessible LTER datasets?	Common reporting format Testing of distributed online data access LTER-Europe data policy
Is LTER-Europe prepared to catch ecosystem change?	Trans-ecodomain approach to environmental "Grand Issues" Analysis of LTER-data in case studies
The link of LTER-Europe with Remote Sensing (Copernicus)?	Strategic contacts at the national level in most LTER Countries First tests for LTER networks as service user and data provider for Copernicus

Demands from LTER-Europe and solutions from EnvEurope

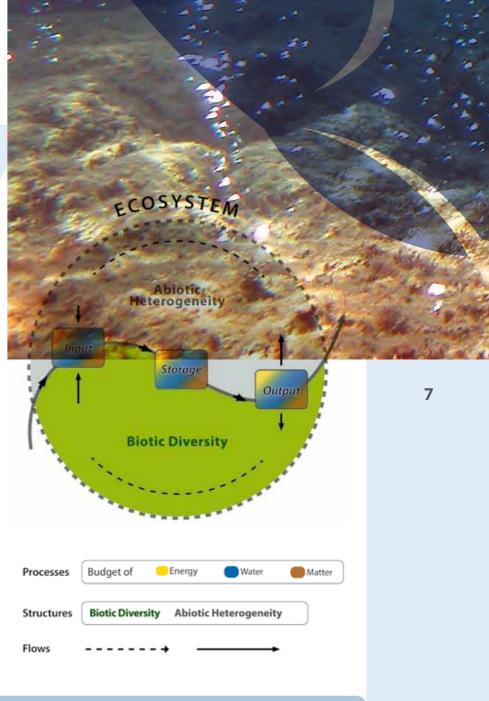
What and how to measure?

A framework for selection of parameters

A huge amount of ecological data related to a high variety of ecological themes is collected over the long-term at LTER sites. One of our main challenges in EnvEurope was to identify appropriate indicators describing the main features of ecosystems. To tackle this issue, we created an extensive set of recommended indicators, targeting key elements of ecosystems.

It was based on the conceptual "Ecological Integrity" framework, which focuses on the ability to sustainable self-organisation of ecosystems (**BOX 3**).

Our choice of parameters was based on some crucial requirements, i.e. that they should be commonly measured at many sites, be regarded as important for the monitored ecosystem, enable indication and comparison across sites and different ecosystems and include the focus of individual sites with specific research and monitoring programs.


BOX 3. The Ecological Integrity concept

According to the Ecological Integrity concept, the main components to describe the pressures on, and state of, ecosystems are their structures and processes. Ecosystem structures are well characterized by biotic diversity (of flora and fauna) and abiotic heterogeneity (of soils, sediments, water, air) forming habitats.

Ecosystem processes (cycling of energy, matter and water) are characterized by indicators of inputs, storages and outputs. The indicators of "Ecosystem Integrity" are represented by parameters accessible by conventional methods of ecosystem quantification ending up in a set of parameters recommended to be calculated or measured in many local instances. This set is based on the focal parameters of

ecosystem research which can be provided by LTER networks.

This approach facilitates one of the major challenges for LTER trans-domain indication, aiming at comparability of measurements for terrestrial, freshwater and marine sites, trying to find suitable indicator-parameter sets from all sites.

The overall picture of pathways and interactions of the elements of Ecological Integrity

	Elements of Ecological Integrity	Indicators of Ecological integrity	Examples for parameters
STRUCTURES	Biotic Diversity	Flora Diversity	Species list and abundance of vascular plants
		Fauna Diversity	Species list and abundance of breeding birds
		Within Habitat Structure	Vegetation structure within habitats
STRUCTURES	Abiotic Heterogeneity	Soil	Bulk density
		Atmosphere	Air temperature
		Habitat	Land cover
PROCESSES	Energy Budget	Input	Photoshynthetic active radiation
		Storage	Above-ground Net Primary Production
		Output	Respiration
		Efficiency measures	Respiration per biomass
PROCESSES	Matter Budget	Input	Wet and dry deposition of atmospheric nitrogen
		Storage	Nitrogen fixation
		Output	Nitrate leaching
		Efficiency measures	Litter decomposition
PROCESSES	Water Budget	Input	Precipitation
		Storage	Soil moisture
		Output	Surface runoff
		Efficiency measures	Ratio transpiration / evaporation

A hitlist of top parameters?

Based on the comprehensive parameters list obtained by this approach, we launched an online ranking survey about the "preferred parameters for (Longterm) Ecosystem Research". The idea was to boil down the number of parameters based on rankings by experts in the international LTER community. Through this process we created a sound base for the recommendation of parameters for long-term ecosystem research and monitoring (**BOX 4**).

Parameters, Indicators and Elements of Ecological Integrity

BOX 4. The international ranking survey of parameters

We applied four ranking criteria for each parameter: (i) Ecological relevance, (ii) Sensitivity to changes, (iii) Measurement effort, (iv) Instrumentation level.

The parameters covered different ecodomains (terrestrial, rivers, lakes and marine ecosystems) and they were ranked by more than 300 participants from 33 countries.

Participants were mainly researchers with different disciplinary backgrounds (plant, animal and landscape ecology, soil science, ecohydrology, modelling).

Most participants were dealing with terrestrial ecosystems (around 60 %), reflecting the predominant component of the LTERcommunity. The result of this survey (which covered about 200 parameters) shows that the relevance of parameters selected for the survey was supported by the overall high ranking values given by the participants.

However, although this did not help to separate the "good" from the "bad" parameters, it confirmed the agreement of the scientific community to the selected parameters based on the Ecological Integrity approach.

Making parameters and methods available: the interactive tool ECOPAR⁶

Based on the Ecological Integritydriven parameter selection, we collated established methods and fed these into the newly developed interactive web tool ECOPAR (ECOlogical PARameters for ecosystem research).

ECOPAR is a living database that provides a comprehensive collection of abiotic and biotic indicators and internationally established methods. It covers parameters and respective measurement methods including the relevant references for terrestrial, freshwater and marine sites, along with the parameter properties important

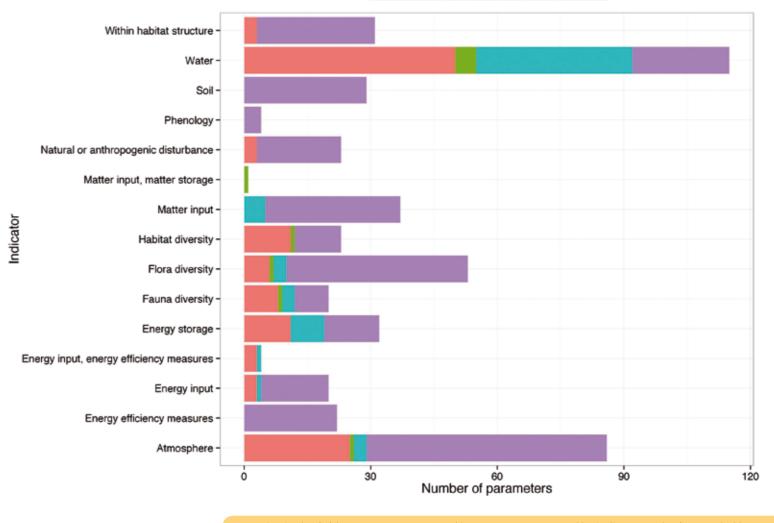
mparison of data (e.g. ement scale, frequency,

e.eu/products

Putting concepts into practice: testing the Ecological Integrity approach in the field

to the LTER-Europe network, EnvEurope provided the • Suitability for up-scaling and umbrella for a set of harmonized field activities, focussing Some of the selected parameters on an agreed core set of are specific for a certain type commonly established ecological of ecosystem (e.g. terrestrial parameters and related methods. or marine). Nevertheless, the All 67 LTER sites - terrestrial, originality and strength of this freshwater and marine - involved EnvEurope activity lies in the in EnvEurope participated in fact that some parameters are this field activity, which was crosscutting among ecosystem performed in 2011 and 2012.

to be field-tested was framed diversity of plant and animal within the Ecological Integrity species, primary productivity), concept and based on some forming a common base for a other key selection criteria:


- Feasibility for partners
- Relevance for different evaluation. ecosystems (same or similar The field exercise produced ecodomains)
- parameters
- analysis

- As the first project dedicated Relevance for indicator assessment
 - remote sensing

types (e.g. meteorology, substrate chemistry, habitat Our choice of the parameters structure, phenological cycle, trans-ecodomain comparison and environmental quality

parameter tested in different more than 300 datasets and more than 15,000 raw data • Complementarity of measured values that were aggregated and analysed to provide an overview • Relevance for LTER scientific of ecological trends at European LTER sites.

Freshwater-lake Freshwater-river Marine Terrestrial

Testing in the field: parameters measured in EnvEurope, grouped by indicator and colour-coded by ecodomain

How to deal with data? The need for overarching information management

A lot of data have been collected information network with from LTER sites without the capacity to discover, following any standards in terms access, interpret, process and of content, file format, metadata distribute data. Analysing trends and storage, or following only of environmental changes, site-specific standards.

past and present data is a big adaptation are key challenges challenge that modern LTER for long-term ecological research information management must and monitoring in Europe. deal with in order to make the Access to reliable and information available.

This situation hampers easy essential to address these data integration and distribution challenges. as well as cross-ecodomain and In EnvEurope, we tested and cross-site analysis.

ecological knowledge synthesis accessibility of data from and availability in the near future different LTER-Europe sites and requires the application of delivered recommendations good information management for site and network level data approaches that go beyond management. simple data storage, to develop a living, globally-integrated

identifying drivers and providing Today the heterogeneity of options for mitigation and

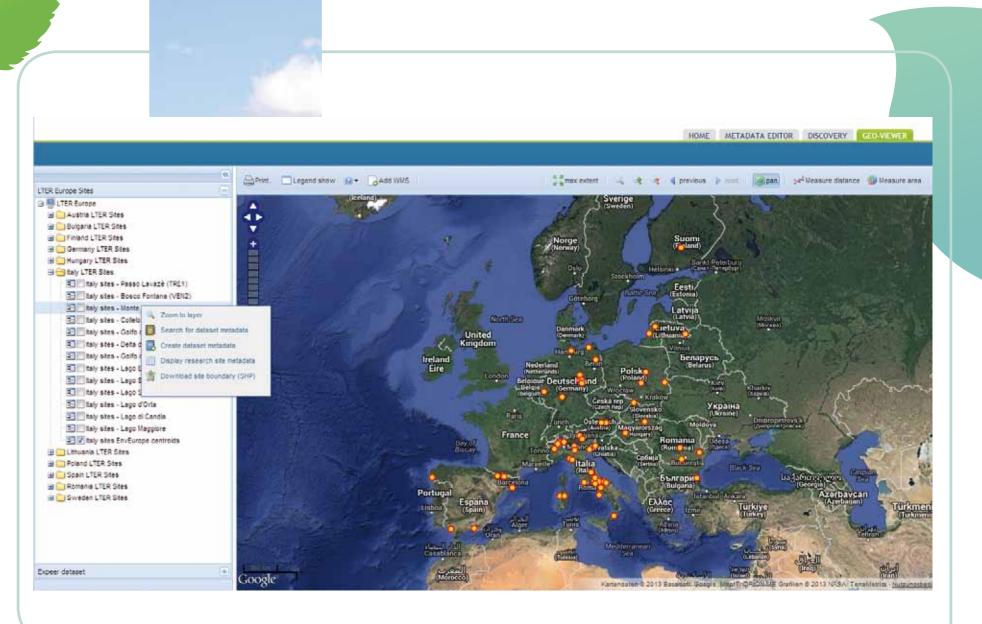
harmonised databases is

provided tools and technologies Addressing the need for in order to enhance the

Making available information about data

Organizing and providing clear and reliable information about available LTER observations (so called "metadata") is one of the key aspects with regard to usability of data and successful data sharing.

In this respect not only do LTER-Europenetwork. we require metadata about The core component of LTER sites (e.g. site location, Management System. kind of long-term research) The metadata specifications manager, field staff).


Creating an easily accessible requirements and related and comprehensive catalogue legislation, we developed of existing data is therefore an a new tool for delivering important task for integrated metadata, providing standards ecological data management. and guidelines for the entire

datasets (e.g. which parameters metadata management within are measured, for how long, with EnvEurope is "**DEIMS**⁷", the which methods), but also about Drupal Ecological Information

and persons involved (e.g. site within DEIMS aim to ensure interoperability within the Using existing standards, user international LTER network.

12

⁷ http://data.lter-europe.net/deims/

Geo-viewer in DEIMS enabling to zoom in to the site level to retrieve information about single sites

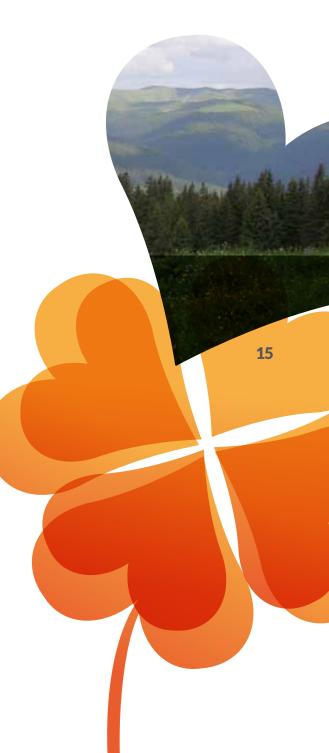
Benefits from reduced diversity: controlled vocabularies

descriptive common А vocabulary is crucial for machinebased exchange, and search for metadata and datasets. Therefore we set up a common controlled vocabulary within EnvEurope, implemented in the thesaurus "EnvThes"8 (Environmental Thesaurus). EnvThes is based on related existing thesauri and other controlled vocabularies, and was extended to meet the needs of the international LTER community. It now serves as the basis for language integration to aid the description of datasets and parameters in LTER-Europe.

Towards greater accessibility and sharing of datasets

The majority of data from the LTER sites of the EnvEurope formats and offline data access defined at the organisation or and rights to publish their results; is the most common means. even the research team level. In this respect EnvEurope In order to overcome this of data within the EnvEurope resembles a characteristic situation and to move towards project and by third parties: subset of the LTER-Europe opening data for scientific and (v) providing the broader network and provides a good research and analysis, we scientific community with easy test environment both for developed a data policy. The access to data available within data exchange and technical purpose of the EnvEurope Data EnvEurope. evaluation. The design of a Policy is to set up fundamental This Data Policy is a first step common reporting format in principles concerning: (i) in providing harmonised access order to facilitate the delivery facilitating collaboration among rules to LTER data. There is still a of existing data in a structured, the project's participants; (ii) long way to go to but EnvEurope harmonised way was an ensuring timely submission of has taken the first steps towards important first step carried out datafor the use within the project; opening up access to LTERin EnvEurope in order to build (iii) protecting researchers' Europe data. a common database of LTER data. We also tested tools and applications for distributed on-line data access, like Linked Data Services⁹ and Sensor Observation Service¹⁰.

Information management strategies at European and global scales are currently focusing increasingly on open access to data. However, access to LTER data is still hampered by


community is stored in simple file a diversity of access rules, mostly Intellectual Property Rights (IPR)

(iv) identifying rules for the use

⁸ http://vocabs.lter-europe.net/EnvThes.html

⁹ http://linkeddata.org/

¹⁰ http://www.ogcnetwork.net/SOS

Analysis of LTER data: catching ecosystem changes

Prove of concept: do LTER data hold the promise?

Large amounts of data, in particular observations over long time periods, have been collected at each LTER-Europe site to document the ways in which ecological systems are responding to changing environmental drivers (e.g. by shifts in species occurrence, loss of biodiversity, changes in air and water quality).

However, solutions to many environmental problems are still elusive, due to limited access to data and lack of synthesis studies.

Integration of datasets and scientific analyses from multiple sites is needed to compare continental-scale variation in multiple drivers, and to identify regions where multiple drivers are interacting to affect coupled human and natural systems. Bringing together existing long-term datasets is beneficial not only for LTER networks but also for particular sites. It opens

up the possibility of cross-site comparisons and new types of analyses, moving from the site to the regional scale.

This will improve the visibility of both the network and individual LTER sites, stimulating new site-based projects and providing insights for good environmental management, connecting science to policy.

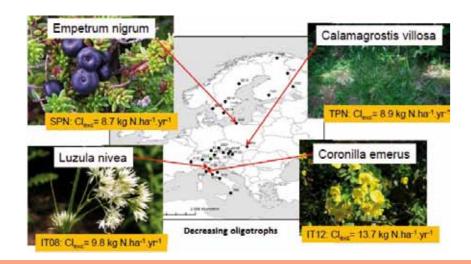
EnvEurope took the opportunity to develop a shared database focused on the identified parameter list.

All sites contributed to this database, which now comprises more than 220 files from 67 sites across Europe, resulting in about 450,000 observation values starting from the seventies of the last century.

Addressing environmental "grand issues" through LTER data

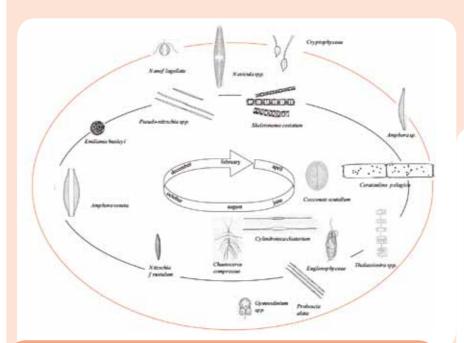
Based on the available longterm data, we identified four main environmental "grand issues" to be addressed and fostered by EnvEurope, concerning changes in:

- 1. Biogeochemical processes, climate and biodiversity
- 2. Ecosystem processes and disturbances
- 3. Ecosystem services
- 4. Socio-economic pressures on the functioning of the ecosystems

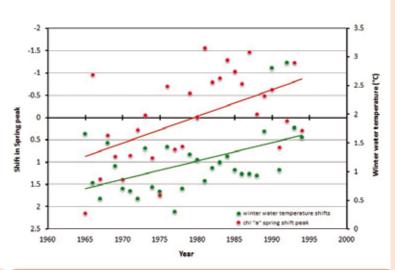

Within these issues, we initiated several specific "case studies" focussing on long-term data analysis addressing different environmental issues (BOX 5.6 and 7).

BOX 5. Does chronic airborne nitrogen deposition cause a threat to forest biodiversity?

In many European countries airborne nitrogen coming from agriculture and fossil fuel burning exceeds critical thresholds and threatens the functioning of ecosystems. One effect is that too much nitrogen stimulates the growth of only a few plants, which outcompete other, often rare, species. As a consequence biodiversity declines. Though this is known to happen in natural and semi-natural grasslands, it has never been shown in forest ecosystems where management is a strong, mostly overriding, determinant of biodiversity. We studied long-term monitoring data from 28 intensively observed forest sites across Europe to analyse temporal trends in plant species cover and diversity. At sites where nitrogen deposition exceeded the critical load, the cover of forest plant species preferring nutrient-poor soils (oligotrophic species) significantly decreased, whereas plant species preferring nutrient-rich soils (eutrophic species) showed an opposite - though weak - trend. These results demonstrate that airborne nitrogen has changed the structure of forest floor vegetation in Europe. Plant species diversity did not decrease significantly within the observed period but the majority of newly established species was found to be eutrophic. Hence we hypothesize that without reducing nitrogen deposition below the critical load forest biodiversity will decline in the future.


For more information see: Dirnböck, T., Grandin, U., Bernhardt-Römermann, M., Beudert, B., Canullo, R., Forsius, M., Grabner, M.-T., Holmberg, M., Kleemola, S., Lundin, L., Mirtl, M., Neumann, M., Pompei, E., Salemaa, M., Starlinger, F., Staszewski, T., Uziębło, A.K. 2013. Forest floor vegetation response to nitrogen deposition in Europe. Global Change Biology (in press).

Examples of decreasing oligotrophic species across Europe (Cl_{ac}: Critical load exceedance of Nitrogen).

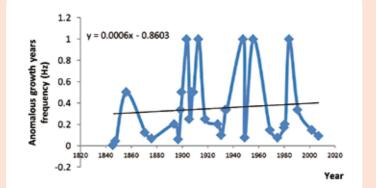

BOX 6. Is the timing of the growing season ("phenology") of plant species changing?

Recorded changes in the seasonal timing of plant and animal species (phenology) has been proposed as tool to monitor systematically the state of the ecosystems and to detect changes triggered by perturbation of the environmental conditions. This study addressed the aquatic ecosystems (marine, transitional and freshwaters) and their microalgal component (the so called "phytoplankton"). The main aims were to: (i) identify critical phenological signals at LTER sites; (ii) identify relations with ecological drivers (nutrients, physical/chemical parameters, climate indices); (iii) compare changes in these signals across different aquatic sites; (iv) estimate the impacts on the life cycle events in phytoplankton population due to climate

Seasonal timing (phenology) of microscopic algae (phytoplankton): the "phytoplankton calendar" (example from the LTER site "Lagoon of Venice"; Bernardi Aubry et al, Scientia Marina, 77-1, 2013).

changes. A total of 30 LTER sites (15 freshwater, 6 marine and 9 transitional) were considered. The conclusions of the study pointed out that: (i) the LTER sites are good sentinels for identify phenological changes; (ii) the trends for most of the LTER sites are showing an anticipation of the spring peak; (iii) an increase in water temperature is the main factor for the difference in the phenology pattern across sites.

Relationship between the spring peak of phytoplankton growth (chlorophyll) and water temperature (example from Lake Galten - Sweden)


BOX 7. Is tree-ring chronology changing due to past human and natural disturbances?

Similar patterns of tree physiological growth follow related natural and anthropogenic disturbances, within a given area and time period.

The growth response indicates the stability and/or the adaptation capabilities of the trees. Tree rings are a very inexpensive and straightforward data source, which is available wherever and whenever trees of a suitable age occur, or where adequate preserved wood samples are available for the purpose of such analysis.

The main conclusion of the study suggests a slow, but steady higher frequency and amplitude of the pointer years, denoting the cumulative incidence of natural and anthropogenic disturbances, and acting as a warning signal.

In fact, translated into a sound wave, this signal would have a higher and higher pitch, in close connection to the increasingly frequent disturbances.

Increasing frequency of anomalous growth years for spruce trees in Bucegi LTER site (Romania)

Frequency of anomalous growth translated into music: higher pitch (frequency) sound wave on a music stave

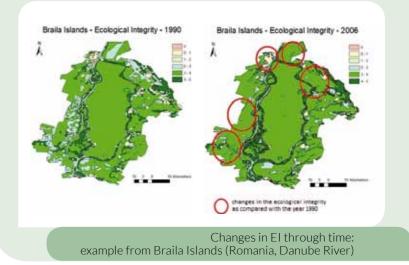
Can LTER be connected to the space?

One of our tasks in EnvEurope was to initiate collaboration between LTER-Europe and the remote sensing activities related to environmental monitoring, specifically with Copernicus.

At the European level, Copernicus (formerly Global Monitoring for Environment and Security - GMES), is a EU strategic programme that receives major observational inputs from satellites in the earth observation domain.

Most of our efforts were devoted to understanding the opportunities of a twoway collaboration with the

Copernicus programme, to provide an assessment of in situ data usability and to test applicability of large scale remote sensing products for long-term ecosystem monitoring in Europe.


We carried out a survey to determine if the *in situ* requirements provided by the Copernicus *in situ* component (the GISC project) could be fulfilled by the LTER community. We also wanted to assess whether there was scope for further cooperation following EnvEurope. During the time frame of EnvEurope, most partners had established formal contact and cooperation with Copernicus representatives in their own countries.

An example of interaction between LTER data and Copernicus products was developed within EnvEurope in the crucial context of Ecosystem Services (ESS) and of Ecosystem Integrity (EI) (**BOX 8**).

BOX 8. How can LTER site knowledge be connected with remote sensing data in order to make quick assessments of Ecosystem Integrity (EI) and Ecosystem Services (ESS)?

The approach to this question encompassed four challenges, to: (i) ensure support for the EU biodiversity strategy about assessment of ESS throughout Europe, (ii) provide a homogeneous and (iii) crossdomain data base for LTER sites and (iv) make use of a publicly available product based on satellite data, the CORINE land cover/ land use maps of Europe (CLC, available for 1990, 2000, 2006). We combined CLC data of individual sites with a matrix of ranked contributions of each CLC class to ESS and EI.

Thereby we could produce spatially explicit site maps showing the ESS value of occurring CLC categories and the changes taken place from 1990, 2000 and 2006. Moreover, the basic matrix with ranking values was adjusted by local knowledge of LTER site managers. This is a starting point for a pan-European assessment of ESS and EI at the landscape scale

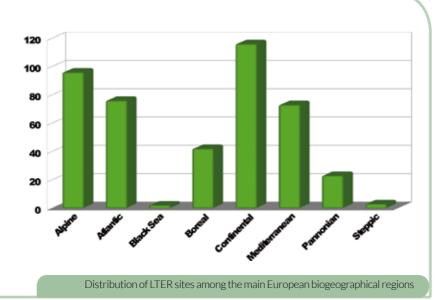
Is there "LIFE after LIFE+"? The living heritage of EnvEurope

In building a site network for cross-site workflows, network successfully tackled these represent, for LTER-Europe, the

FER sites:

(green dots),

errestrial


Europe. With its successful ecosystem research. completion, EnvEurope leaves LTER-Europe, with its highly The products of EnvEurope experimental approaches.

biodiversity and ecosystem design, tools for information requirements within its runtime entry point for the next phase in research since 2004, LTER- management, harmonization (2010-2013). The tasks of designing the European research Europe has identified a set of and standardization. The EnvEurope were planned with infrastructure landscape in requirements in the field of LIFE+ project EnvEurope has the clear aim to enhance LTER- the field of biodiversity and

> a network that is arguably in a instrumented observational sites much better state that it was and socio-ecological research four years previously. It is more platforms, is now ready to integrated, more active and cooperate and integrate with both has greater capacity to deliver large scale monitoring schemes and support vital research. (including remote sensing) and

LTER site typologies: Platforms observation egion up to 0.000 km²: vellow dots) and sites observation region up to 10,000 ha). Complex sites (red dots) include more ecosystem types; simple sites (green dots) include only one

CONSORTIUM **Coordinating Beneficiary:** ITALY, National Research Council, Institute of Marine Sciences. Coordinator: Alessandra Pugnetti Project Manager: Mariangela Ravaioli

Associated Beneficiaries:

Environment Agency Austria (AUSTRIA); Institute of Biodiversity and Ecosystem Research – Bulgarian Academy of Sciences (BULGARIA); University of Jyväskylä (FINLAND); Senckenberg Research Institute and Natural History Museum (GERMANY); Helmholtz Centre for Environmental Research (GERMANY): University of Debrecen (HUNGARY); Centre for Ecological Research, Hungarian Academy of Sciences (HUNGARY); Italian National Research Council (ITALY); National Forest Service of Italy (ITALY): ASTER S. cons. p. a. (ITALY): Aleksandras Stulginskis University (LITHUANIA); European Regional Centre for Ecohydrology U/A Unesco - International Institute of Polish Academy of Sciences (POLAND): Institute for Ecology of Industrial Areas (POLAND); University of Bucharest (ROMANIA); Forest Research and Management Institute (ROMANIA); Spanish National Research Council (SPAIN); Swedish University of Agricultural Sciences (SWEDEN).

Project LIFE08 ENV/IT/000399 co-financed by the European Commission Programme LIFE+ (2010 - 2013)

Information and contacts: www.enveurope.eu - enveurope@ismar.cnr.it