

- I. Revised manuals of pre-existing manuals
- II. Manual with new harmonized methods

(Manual of harmonised methods for environmental indicators across different ecosystems)

Deliverable number

PD_A2.1.2a and b

Delivery date 12/2011

Status Rev 2.0

Authors

Mark Frenzel, Cornelia Baeßler, Mauro Bastianini, Alessandro Campanaro, Giorgio Matteucci, Stefan Stoll

With the contribution of the LIFE+ financial instrument of the European Community

ENVeurope © 2010-2014 Life Enviroment Project LIFE08 ENV/IT/000339.

Title	I. Revised manuals of pre-existing manuals		
	II. Manual with new harmonized methods		
	(Manual of harmonised methods for environmental indicators across different ecosystems)		
	NOTE: The deliverables I. and II. have been merged to one document, as the pre-existing manuals are the basis for the harmonization of methods. Thus the merge is an added value for the deliverable itself, as the separate treatment would create a lot of redundancies.		
Creator	Mark Frenzel (UFZ), Cornelia Baeßler (UFZ), Mauro Bastianini (CNR-ISMAR), Alessandro Campanaro (CFS), Giorgio Matteucci (CNR-ISAFOM / CNR-IBAF), Stefan Stoll (Senckenberg),		
Creation date	15/12/2011		
Date of last revision	20/01/2013		
Subject			
Status	🗌 Draft 🛛 🔀 Final		
Publisher	EnvEurope project		
Туре	Text		
Type Description	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept.		
Type Description Contributor	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members		
Type Description Contributor Revised by	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ)		
Type Description Contributor Revised by Format	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc		
Type Description Contributor Revised by Format Source	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc		
Type Description Contributor Revised by Format Source Rights	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc		
Type Description Contributor Revised by Format Source Rights Identifier	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc □ Restricted □ Public PD_A2.1.2ab_Frenzel_et_al-ManualRevisedNewMethods-Rev2_0.docx / pdf		
Type Description Contributor Revised by Format Source Rights Identifier	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc PD_A2.1.2ab_Frenzel_et_al-ManualRevisedNewMethods- Rev2_0.docx / pdf En		
Type Description Contributor Revised by Format Source Rights Identifier Language Relation	Text The present manual is a result of expert knowledge of EnvEurope partners / LTER-Europe community and the analysis of pre-existing manuals developed by various indicator initiatives. It comprises a composition of fact sheets of environmental indicators for terrestrial, river, lake and marine ecosystems. The fact sheets are based on the ecological integrity concept. EnvEurope partners, EXPEER partners, LTER-Europe members Mark Frenzel (UFZ) Doc □Restricted ⊇ Public PD_A2.1.2ab_Frenzel_et_al-ManualRevisedNewMethods- Rev2_0.docx / pdf En		

These are Dublin Core metadata elements. See for more details and examples http://www.dublincore.org/

Acknowledgments

This deliverable could not have been brought to this state without the efforts and the willingness to contribute from many members of the EnvEurope team and other experts from the FP7 project ExpEER (http://www.expeeronline.eu) and the LTER-Europe community.

Contact information:

Mark Frenzel – Editor Helmholtz Centre for Environmental Research (UFZ) Theodor-Lieser-Str. 4, 06120 Halle, Germany E-mail: mark.frenzel@ufz.de Tel +44 345 5585304, Fax +44 345 5585329

Cornelia Baeßler

Helmholtz Centre for Environmental Research (UFZ) Theodor-Lieser-Str. 4, 06120 Halle, Germany E-mail: cornelia.baessler@ufz.de Tel +44 345 5585317, Fax +44 345 5585329

Mauro Bastianini

National Research Council (CNR-ISMAR) Institute of Marine Sciences Castello 1364/a, 30122 Venezia, Italy E-mail: mauro.bastianini@ismar.cnr.it Tel +39 041 2404711, Fax +39 041 5204126

Alessandro Campanaro

CFS - Centro Nazionale Biodiversità Forestale "Bosco Fontana" di Verona and Sapienza Università di Roma - Dipartimento di Biologia e Biotecnologie Via Carlo Ederle 16a, 37100, Verona, Italy E-mail: ale.naro@gmail.com Tel +39 334 6197732

Giorgio Matteucci

National Research Council of Italy Inst. Of Agroenvironmental and Forest Biology and Inst. For Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM / CNR-IBAF) Via Salaria, km 29, 300 00015 Monterotondo Scalo (RM), Italy E-mail: giorgio.matteucci@cnr.it Tel +39 06 90672533, Fax +39 06 9064492

Stefan Stoll

Senckenberg Gesellschaft für Naturforschung (SENCK) Abt. Limnologie und Naturschutzforschung Clamecystraße 12, 63571 Gelnhausen, Germany E-mail: stefan.stoll@senckenberg.de Tel: +44 6051 61954 3123, Fax: +44 6051 61954 3118

Version	Date	Author	Task
1.0	2011-12-15	Frenzel	Text and mail merge of table contents to text document
1.1	2012-01-12	Frenzel	Adjustments; completion of text; formatting
2.0	2013-01-20	Frenzel	Revision of parameters; updating and inclusion of literature

Content

1	Pre	Preface to version 21		
2	Int	Introduction		
3	Def	Definitions		
л Л	Dol	tod approaches		
4		ated approaches		
5	The	conceptual framework of Ecological Integrity		
6	The	process of indicator selection 8		
7	Fac	sheets: Recommendations for Indicators and Parameters		
8	Ref	erences – sorted by topics10		
-	R 1	Terrestrial 10		
	0.1	Pivore 1		
	0.2	nivers		
	8.3	Lakes1		
	8.4	Marine1		
9	Ref	erences - alphabetically 1		
1(D Fac	t sheets for different environments		
	10.1	Terrestrial Systems		
	10.1	1 Flora Diversity \Rightarrow Vegetation: Species and functional diversity (incl. alien species,		
	thre	atened species)9		
	10.1	2 Flora Diversity ⇒ Vegetation: Species and functional diversity (incl. alien species,		
	thre 10.1	3 Elora Diversity ⇔ Vegetation: Species and functional diversity (incl. alien species		
	thre	atened species)		
	10.1	4 Flora Diversity ⇒ Population trends of vascular plants		
	10.1	5 Flora Diversity ⇒ Forest: Stand characteristics, stand diversity		
	10.1	6 Fauna Diversity ⇒ Species richness: Birds (incl. alien species, threatened species) 22		
	10.1	7 Fauna Diversity ⇒ Species richness: Butterflies (incl. alien species, threatened species,		
	sede	ntary and migratory species)		
	10.1	9 Within Habitat Structure \Rightarrow Vegetation composition 28		
	10.1	10 Within Habitat Structure \Rightarrow Vegetation composition		
	10.1	11 Soil ⇒ Soil physical characteristics: soil horizons, soil water retention curves, total		
	por	sity, particle size distribution, stone content		
	10.1	12 Soil ⇔ Soil bulk density		
	10.1	13 Soil ⇔ Soil chemistry (related to profile)		
	10.1	14Soil ⇒ Soil chemistry (related to profile)38		
	10.1	15 Soil ⇔ Soil chemistry (related to profile)		
	10.1	 Soil ⇒ Soil chemistry (related to profile)		
	10.1	1/ Soli → Soli chemistry (related to profile)		
	10.1	10 Soil \Rightarrow Soil chemistry (related to profile) 40		
	10.1			

10.1.20	Soil ⇔ Soil chemistry (related to profile)
10.1.21	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 52
10.1.22	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 54
10.1.23	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 56
10.1.24	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 58
10.1.25	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 60
10.1.26	Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.) 62
10.1.27	Habitat ⇒ Cover of CORINE land use (better: EUNIS habitats); EU Habitat Directive
(connect	ion to remote sensing)
10.1.28	E_input ⇔ Energy input: Radiation
10.1.29	E_input ⇒ Energy input: Radiation68
10.1.30	E_input \Rightarrow Photosynthetic energy fluxes: a) energy input (light absorption); b) energy ing (photoshemical vs non-photoshemical)
10 1 31	F input $rac{Photosynthetic energy fluxes; a) energy input (light absorption); b) energy$
nartition	ing (nhotochemical vs non-photochemical)
10 1 32	F input \Rightarrow Photosynthetic energy fluxes: a) energy input (light absorption): b) energy
nartition	ing (nhotochemical vs non-photochemical) 74
10 1 33	F storage ⇔ Biomass 76
10.1.34	E_output ⇔ Reflectivity 78
10.1.35	E output ⇔ Heat flux
10.1.36	E output ⇔ Respiration
10.1.37	E efficiency measures ⇒ Energy efficiency
10.1.38	M input \Rightarrow Deposition of main nutrients
10.1.39	$M_{input} \Rightarrow$ Deposition of main nutrients
10.1.40	$M_{input} \Rightarrow$ Deposition of main nutrients
10.1.41	$M_{input} \Rightarrow$ Deposition of main nutrients
10.1.42	M_storage Biomass
10.1.43	M_storage ⇔ S, N content of biomass
10.1.44	M_storage → Matter storage
10.1.45	M_storage ⇒ Nitrogen fixation100
10.1.46	M_output ⇔ Significant matter export: (1) harvesting, grazing; (2) leaching; (3) gas
emission	s (NH3, denitrification products)102
10.1.47	M_output ⇔ Green House Gas (GHG) exchange104
10.1.48	$M_{output} \Rightarrow Nitrate leaching$
10.1.49	M_efficiency measures ⇒ Nutrient cycling
10.1.50	M_efficiency measures ⇒ Nutrient cycling
10.1.51	M_efficiency measures ⇔ Nutrient cycling
10.1.52	W_input \Rightarrow Precipitation, throughtall, runoff
10.1.53	W_storage ⇒ Soil water
10.1.54	W_storage ⇒ Soli moisture
10.1.55	W_storage → Water bodies
	W_output → Evapotranspiration
10.1.57	$vv_{output} \rightarrow surface runon 124$
10.2 0	vv_entitienty measures -> vvater balance
TO'S KINE	128
10.2.1	Flora Diversity

1	0.2.2	Fauna Diversity	131
10.2.3 Fauna Diversity ⇒ Fish		Fauna Diversity ⇒ Fish: species list and abundances	133
1	0.2.4	Invasive species ⇒ Proportion of invasive to non-native species	135
1	0.2.5	Soil ⇒ Sediment characterization	137
1	0.2.6	Soil ⇔ Sediment characterization	139
10.2.0		Water ⇒ Water: physico-chemistry, hydrologic parameters	. 141
-	0.2.8	Water ⇒ Water: physico-chemistry, hydrologic parameters	143
1	0.2.0	Water ⇒ Water: physico-chemistry, hydrologic parameters	1/15
1	0.2.5	Water \Rightarrow Water: physico-chemistry, hydrologic parameters	1/17
1	0.2.10	Air $rac{1}{2}$ Pasic climate of the site (ranges interannual variability extremes etc.)	1/0
1	0.2.11	All \rightarrow Basic climate of the site (ranges, interannual variability, extremes, etc.)	. 149
1	0.2.12	All -> Basic climate of the site (ranges, interannual variability, extremes, etc.)	. 151
1	0.2.13	Habitat \Rightarrow Habitat type diversity	153
1	0.2.14	Habitat ⇒ Hydromorphological intactness	155
1	0.2.15	Habitat ⇔ Land use in catchment	157
1	0.2.16	E_input ⇔ Radiation: total irradiance, PAR; Temperature: heat fluxes	159
1	0.2.17	$E_storage \Rightarrow Biomass \dots$	161
1	0.2.18	$E_storage \Rightarrow$ Nitrogen fixation	163
1	0.2.19	$E_output \Rightarrow Albedo \dots$	165
1	0.2.20	E_output ⇔ Respiration	167
1	0.2.21	E_output ⇔ Drift	169
1	0.2.22	M input ⇔ Suspended organic particles	171
1	0.2.23	M input ⇔ Nutrients (N)	173
1	0.2.24	M input \Rightarrow Nutrients (P)	175
1	0.2.25	M storage ⇒ Living biomass	177
1	0.2.26	M storage ⇔ Living biomass	179
1	0 2 27	M_storage	181
1	0.2.27	$M_{\text{storuge}} \rightarrow Dedd Montass international constraints in the storuge of suspended organic particles$	182
1	0.2.20	M_output r Loss of suspended organic particles	105
1	0.2.29	$M_{\text{output}} \rightarrow \text{Loss of nutrients (N)}$	107
1	0.2.50	$M_{\text{output}} \Rightarrow \text{Loss of Huthenits (P)}$	100
1	0.2.31	M_output \$\sigma Drift rates, emergence data, harvesting.	189
T	0.2.32	$M_{\rm output} \Rightarrow Diff rates, emergence data, harvesting$	191
1	0.2.33	M_output \Rightarrow Drift rates, emergence data, narvesting	193
1	0.2.34	W_input \Rightarrow Precipitation	195
1	0.2.35	W_input ⇒ Discharge upstream of monitored reach	197
1	0.2.36	W_storage \Rightarrow Water retention, storage	199
1	0.2.37	W_output \Rightarrow Discharge at downstream end of monitored reach, evaporation	201
1	0.2.38	$W_{output} \Rightarrow$ Discharge at downstream end of monitored reach, evaporation	203
10.3	3 Lake	Systems	205
10.5			205
1	0.3.1	Flora Diversity \Rightarrow Flora diversity indices (taxonomic, functional) on primary produced the second	ucers
		206	
1	0.3.2	Flora Diversity ⇒ Flora diversity indices (taxonomic, functional) on primary prod	ucers
		208	
1	0.3.3	Fauna Diversity ⇒ Fauna diversity indices (taxonomic, functional)	210
1	0.3.4	Fauna Diversity ⇒ Fauna diversity indices (taxonomic, functional)	212
1	0.3.5	Fauna Diversity ⇔ Fauna diversity indices (taxonomic. functional)	214
1	0.3.6	Invasive species \Rightarrow Proportion of invasive to non-native species	216
1	0.3.7	Soil ⇒ Sediment: Particle size distribution	218
1	038	Water ⇔ Seasonal/annual dynamics of temperature	220
1	0.3.0	Water 🖒 Seasonal/annual dynamics of oxygen	220
1	0.3.3	Water -> Seasonal/annual dynamics of calinity and conductivity	222 271
1	0.3.10	Water -> Seasonal/annual dynamics of sumbidity	224
1	0.3.11	water → Seasonal/annual dynamics of turbidity	220
1	0.3.12	vvater 🖵 Seasonal/annual dynamics of nutrients	228

10.3.13	Water ⇒ Seasonal/annual dynamics of pH	230
10.3.14	Water ⇒ Seasonal/annual dynamics of transparancy, water color	232
10.3.15	Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)	234
10.3.16	Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)	236
10.3.17	Habitat ⇒ Habitat type diversity and coverage	238
10.3.18	Habitat	240
10.3.19	E_input ⇔ Temperature	242
10.3.20	E input ⇒ Radiation	244
10.3.21	E storage ⇒ Biomass, Chlorophyll	246
10.3.22	E output ⇔ Light reflection	248
10.3.23	E output ⇔ Respiration	250
10.3.24	E output ⇔ Heat fluxes	252
10.3.25	M input → Nutrient inputs via precipitation, run-off	254
10.3.26	M input → Nutrient inputs via precipitation, run-off	256
10.3.27	M input → Nutrient inputs via precipitation, run-off	258
10.3.28	M storage ⇒ Living biomass	260
10.3.29	M storage ⇒ Biologically available carbon in water and sediments	262
10.3.30	M storage ⇒ Nitrogen in water and sediments	264
10.3.31	M storage ⇒ Phosphorus in water and sediments	266
10.3.32	M output ⇔ Sedimentation	268
10.3.33	 M_output ⇔ Outflow	270
10.3.34	M output \Rightarrow Harvesting	272
10.3.35	 M_output ⇔ Outflow	274
10.3.36	 M efficiency measures ⇔ Trophic transfer efficency	276
10.3.37	 M efficiency measures ⇔ Trophic transfer efficency	278
10.3.38	 M efficiency measures ⇔ Matter breakdown rates	280
10.3.39	 M efficiency measures ⇔ Production to biomass ratio	282
10.3.40	 W input ⇔ Precipitation	284
10.3.41	W input ⇔ Catchment input	286
10.3.42	W input ⇔ Catchment input	288
10.3.43	 W_storage ⇔ Water level	290
10.3.44	 W_output ⇔ Outflow	292
10.3.45	W output ⇔ Evaporation	294
10.4 M		206
10.4 101		290
10.4.1	Flora Diversity ⇒ List of species, diversity indices	297
10.4.2	Flora Diversity ⇒ Absolute and relative abundance, diversity indices	299
10.4.3	Flora Diversity ⇒ Seagrasses: number of species and abundance	301
10.4.4	Flora Diversity ⇒ Seagrasses: Genetic diversity	303
10.4.5	Flora Diversity	305
10.4.6	Flora Diversity	307
10.4.7	Fauna Diversity \Rightarrow Micro and mesozooplankton: List of species, diversity indices .	309
10.4.8	Fauna Diversity ⇒ Micro and mesozooplankton: abundance, diversity indices	311
10.4.9	Fauna Diversity ⇒ Fauna: List of species, diversity indices	313
10.4.10	Fauna Diversity 🔿 Fauna: abundance, diversity indices	315
10.4.11	Fauna Diversity ⇒ Fish: List of species, abundance, diversity indices	317
10.4.12	Within Habitat Structure ⇒ Habitat builders	319
10.4.13	Within community structure	321
10.4.14	Soil \Rightarrow Sediment characterization	323
10.4.15	Soil \Rightarrow Sediment characterization	325
10.4.16	Soil \Rightarrow Sediment characterization	327
10.4.17	Water 🗢 Water: Temperature	329
10.4.18	Water ⇔ Water: Salinity	331

10.4.19	Water ⇒ Water: (1) Oxygen, (2) pH	333
10.4.20	Water ⇒ Water: Transparency	335
10.4.21	Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)	337
10.4.22	Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)	339
10.4.23	E_input	341
10.4.24	E_input	343
10.4.25	E_storage ⇒ Primary production (seagrass)	345
10.4.26	E_storage ⇒ Biomass	347
10.4.27	E_storage ⇒ Biomass	349
10.4.28	E_storage ⇒ Organic matter	351
10.4.29	E_storage ⇒ Biomass	353
10.4.30	E_storage ⇒ Biomass	355
10.4.31	E_output ⇔ Reflectivity	357
10.4.32	E_output ⇔ Respiration	359
10.4.33	E_output	361
10.4.34	M_input	363
10.4.35	M_input	365
10.4.36	M_input	367
10.4.37	M_storage	369
10.4.38	M_storage	371
10.4.39	M_output ⇒ Sediment mass and contents	373
10.4.40	M_output	375
10.4.41	M_output → Harvesting	377
10.4.42	M_efficiency measures ⇒ Sedimentation: Accumulation rates	379
10.4.43	W_input	381
10.4.44	W_input ⇔ River discharge	383
10.4.45	W_input	385
10.4.46	W_storage ⇔ Residence time of marine currents	387
10.4.47	$W_{output} \Rightarrow$ Evaporation	389
10.4.48	W_output ⇒ Advection	391
10.4.49	W_output ⇔ Outflow	393

1 Preface to version 2

The second version is going to be better tuned with the needs of the user and with the input from the community of colleagues working in the field of ecosystem research. The manual is intended to be a "living document" depending on constant critical review and input like references and parameter property descriptions.

The most important changes in version 2 are:

- We omitted the level II indicators, as we decided to focus on adding information to the level I instead. Level II needs much more input before we may add it in a later version again.
- Separating parameters in different parameter fact sheets if several parameters have been listed in one fact sheet.
- The literature references are included now in the fact sheets of single parameters / indicators and in a general and in ecosystem-specific bibliographies as well.

Moreover, in the meantime an online ranking survey was conducted addressing EnvEurope partners, LTER-Europe and the ILTER community. The aim of this survey was to identify the top ranked parameters according to the criteria of ecological importance, sensitivity to changes, measurement effort and the necessary level of instrumentation. The structure of the survey is copied from the structure of the fact sheets. The results will give support to decisions of site managers for the priority of parameters to be selected.

Outlook: the printed version or even the PDF with enabled navigation is nice to have, but nowadays this is not timely. We are planning a web-based version which is makes navigation even more simple and allows adding items (e.g. parameters, parameter properties, references) by the user.

2 Introduction

Why to create another manual of manuals for ecosystem-related research and monitoring? We would like to emphasize that the separation between the research and monitoring communities is often artificial, as data gained by monitoring are often the base for research on long term time series. Furthermore, ecosystem research often develops methods that, later on, are taken up in ecosystem monitoring. Thus in our understanding, beside the long-term research, the monitoring aspect is always included in the Long Term Ecosystem Research (LTER) background. The idea for this kind of compendium was born within the LTER-Europe (<u>http://www.lter-europe.net/</u>) community and may be of relevance to all networks which need to ensure comparability of data and therefore have to agree on common standards to exploit the added value of networking. Since the foundation of LTER-Europe there was a demand for standardised parameters and harmonised methods which should be applied throughout all LTER-Europe sites, but indeed this concerns in general all sites dealing with aspects of ecosystem research. The willingness to work on these issues was manifested in 2008 by the establishment of an expert panel "Standardisation and Harmonisation" within the LTER-Europe network, which recently merged with the expert panel "Technology" to form the panel on "Standardisation and Technology" (http://www.lter-europe.net/ep/ep-std). The starting ground for this expert panel was already prepared by the network of excellence ALTER-Net (A Long-Term Biodiversity, Ecosystem and Awareness Research Network; <u>http://www.alter-net.info/</u>). In 2010 this task has been essentially boosted by the Life+ project EnvEurope (http://www.enveurope.eu/) focusing on the assessment of environmental quality and pressures across Europe making use of the LTER network as an integrated and shared system for ecosystem monitoring.

At this time, LTER-Europe covers more than 300 sites throughout Europe (67 of which are included in EnvEurope). The single LTER-Europe sites have been established for different reasons. Many of those established on terrestrial systems have joined the LTER network coming from the International Cooperative Programmes Integrated Monitoring (ICP IM) and ICP Forest, focusing on the impact of air pollution on ecosystems. These sites are often operated since at least one decade, measuring numerous parameters following well elaborated protocols. Some of them are highly instrumented, even beyond the needs from the ICP monitoring programmes. Other LTER-Europe sites developed from more specific research questions and projects run by their responsible institutions. These sites often provide more heterogeneous data and time series of different lengths but sometimes focus on very relevant research issues (e.g. climate change impacts on ecosystems). Both type of sites can benefit by entering a common network (e.g. LTER), bringing specific approaches for a fruitful integration. Furthermore, LTER sites are also quite heterogeneous in terms of the investigated ecosystem (terrestrial, freshwater and marine environments), size (plot to landscape scale), complexity (more ecosystems included, social scale considered), infrastructure, instrumentation, staff resources and long-term funding. This heterogeneity, on one side may limit the generation and use of datasets suitable for cross-site analysis which is one of the basic aims of the LTER network while, on the other side, can offer material for analysis of ecological processes in different eco-domains.

Hence the need for common sets of parameters and methods is obvious, although we are aware of a possible low level of commitment to implement these sets at individual sites, due to the lack of available supporting central funding within the network. For that reason the first intended classification of mandatory and optional parameters (and related methods) was changed to a recommendation of first and second level indicators / parameters. In the process of dealing with this issue in an iterative and participative way by including the ecosystem research community, we realized that several goals had to be modified to meet the needs of the "practitioners" which are in most cases the site managers; as an example, people may not be willing to switch to different methods if they are expected to continue producing time series of comparable data for reporting duties. Therefore we propose rather to develop and agree on data standards like frequency, accuracy and spatial scale of parameter measurements than to elaborate new methods. This approach was stimulated by the data product descriptions scheme developed for the National Ecological Observatory Network (US) –NEON (http://www.neoninc.org/) which will enter its construction phase in 2013.

Thus harmonisation of methods is interpreted in the sense of this manual as the setting of data properties of parameters enabling for comparison of data sets with the aim of joint analysis. At the same time, the used methods need to be reported and should be chosen among methods proposed by existing networks or

Life08 ENV/IT/000399

Manual of Methods

projects (i.e. accepted at "large scale"), methods generally used by the relevant scientific community and in the interested ecosystem and/or methods already published (i.e. peer reviewed).

Parallel to the bottom-up process of selecting suitable parameters and methods that are commonly applied, represent the state of the art and ensure comparability of the data, an overarching concept was chosen that ties these data together. The selected conceptual framework of Ecological Integrity is described in chapter 4. In this integrated approach, many indicators will be a novel concept for many sites, since only few sites will deal with an observation of ecosystems based on the ecological integrity framework.

Starting to work on this task we did not realize the dimension of the product, because it was intended to comprehensively cover research and monitoring at LTER sites. At the same time, we were not looking to "reinvent the wheel" and we were ready to consider taking on board already established and accepted methods in the different eco-domains. Furthermore, we did not foresee the related conceptual work, the challenging task of motivating people to contribute and the implication of dealing with terrestrial, river, lake and marine systems. Hence it turned out to be quite demanding in terms of knowledge that had and still has to be collected. Thus this manual is intended to be a "living document" which means that the present version is the "final" starting point and that we are looking forward to filling the remaining empty cells or change entries after being analysed through expert knowledge from the ecosystem research community. Considering this, it is evident that this manual will need regular updates to incorporate new approaches and methods and will be subjected to continuous review in order to be at pace with the developments in Long Term Ecosystem Research and monitoring.

3 Definitions

Especially often used terms should be defined unambiguously to safeguard a common understanding. Therefore we provide the following definitions:

Index: A complex measure based on several parameters and / or calculations (e.g. Shannon index). Indices are often used as indicators too.

Indicator: A proxy for several ecosystem aspects. Individual indicators are designed to translate complex information in a concise and easily understandable manner in order to represent a particular phenomenon (e.g. biodiversity). It quantifies e.g. the magnitude of stress, habitat characteristics, degree of exposure to stressors or of ecological response. Indicators may be simple (e.g. just one indicator species) or complex (e.g. habitat connectivity) and, sometimes, can be equal to a parameter.

Manual: A user guide which is a technical communication document intended to give assistance to people using particular methods.

Method: A method of procedure consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses. Methods are the key to interpretation, reliability and evaluation of results and the way allowing other people to repeat and reproduce results. Compared to a protocol it is less detailed.

Monitoring: "Monitoring is an intermittent (regular or irregular) series of observations in time, carried out to show the extent of compliance with a formulated standard or degree of deviation from an expected norm." (after Hellawell 1991, modified by Brown 2000)

"Monitoring in the sense used here, is distinct from surveillance, which is repeated survey using a standard methodology undertaken to provide a series of observations over time. Surveillance can yield valuable information on trends in the state of biodiversity and Earth science, but does not by itself establish whether objectives or standards have been met. Information derived from surveillance may be used to inform judgements on the condition of features on sites." (Joint Nature Conservation Committee, http://jncc.defra.gov.uk/page-2268)

Observation: Any "measurement" by human sense impressions (subjective, qualitative) or by use of technical devices, e.g. sensors, measuring tape, satellite image (objective, quantitative). Quantitative measurements reduce an observation to a number which can be recorded.

Parameter: Same meaning as "variable", "the measured item". Parameters will often be identical with the indicator itself, but not every indicator is identical with the parameter assigned to it.

Protocol: A predefined written procedural method in the design and implementation of technical sequences in experiments and observations. They are used whenever it is desirable to standardise a laboratory or field method to ensure successful replication of results by others.

4 Related approaches

Being aware of the work done about identification of environmental indicators we did not intend to start from scratch, but it is important to know that the indicator sets mentioned below have been developed for specific purposes. The following list of "indicator initiatives" is extracted from the report "Conceptual framework for indicator assignment and selection for LTER-sites" which is available as download at the LTER-Europe website (http://www.lter-europe.net/ep/ep-std).

Examples on indicator initiatives for biodiversity:

- Streamlining European 2010 Biodiversity Indicators (SEBI 2010)
- Group on Earth Observations Biodiversity Observation Network (GEO BON)
- Living Planet Index (LPI)
- Species Trend Index (STI)
- National Biodiversity Index (NBI)
- Red Lists
- Biomare

Examples on initiatives for integrative environmental indicators:

- Sustainability indicators (EU)
- EEA core set of environmental indicators
- OECD key environmental indicators
- TEEB (The Economics of Ecosystem and Biodiversity)
- Natural Capital Index (NCI)
- HANPP (Human appropriation of net primary productivity)
- Critical Load Exceedence Index (CLE)
- Connectivity Indices
- Corine Land Cover (CLC)
- National Ecological Observatory Network (US) NEON

Compared to the approach taken in EnvEurope, the above mentioned initiatives are not aimed at getting an holistic view on ecosystems, but on particular aspects like halting biodiversity loss and relevance for policy (SEBI 2010; <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=SEC:2010:1165:FIN:EN:PDF</u>) or focusing at policy-relevant indicators giving answers to selected priority policy questions (EEA core set of indicators 2004; <u>http://www.eea.europa.eu/data-and-maps/indicators/freight-transport-demand/eea-core-set-of-indicators-csi</u>).

5 The conceptual framework of Ecological Integrity

Why is it advisable to develop and tune a conceptual framework for the specific needs of ecosystem research? The first important reason is that there is no such concept developed and agreed within the LTER community, which opens the opportunity to assign each measured parameter to a conceptual framework that takes into consideration all aspects of ecosystems. Another important argument is that any indicator selection has to be defensible by explaining why a specific set of indicators and parameters set is chosen for monitoring. In the EnvEurope project this framework has been developed by Benjamin Burkhard & Felix Mueller (University Kiel, 2011) on the base of the ecological integrity concept. Having this generic framework at hand was regarded as a considerable progress by the LTER community. The detailed report "Conceptual framework for indicator assignment and selection for LTER-sites" is available at http://www.lter-europe.net/ep/ep-std.

Briefly, the idea of ecological integrity is based on the guiding principle for precaution against unspecific ecological risks in the framework of sustainable development. Its aim is to safeguard relevant ecosystem services and preserve the capability to continue self-organized development of systems and services. The self-organizing capacity of ecosystems describes (a) their ability to develop towards a higher degree of self-organization, which is characterized by more complex structures, or (2) to adapt to changing external conditions by keeping the current degree of self-organization. Thus, the result of self-organizing processes in ecosystems is the build-up and the maintenance of complex structures.

Table 1 shows the main components of the ecological integrity concept, starting from the structural components describing biotic diversity and abiotic heterogeneity and considering also, as well as processes (input, output, storage) related to the energy, matter and water balances. While the structural components describe mainly the state of the system (that can react to pressures, e.g. land use), the process components are directly reflecting states, changes and pressures (e.g. nitrogen input). If there would be one "ideal" quantifiable indicator for each of the higher level of ecological integrity indicators (Table 1, right column), we will end up with 19 indicators for characterisation of an ecosystem. However, this number easily increases two- or three fold since often several indicators (e.g. bird, butterfly diversity) are necessary to feed in the information for a higher level indicator (e.g. fauna diversity).

The fact sheets of the indicators are basically structured according to the scheme of ecological integrity.

Life08 ENV/IT/000399

Manual of Methods

Table 1: The components and basic indicators of Ecological Integrity. Note that the expert work starts with identifying the concrete lower indicators to be measured pointing at the higher, quite general ecological integrity indictors.

Components I	Components II	Ecological integrity indicators
ECOSYSTEM STRUCTURES		
	Biotic diversity	Flora diversity
		Fauna diversity
		Within habitat structure
		Additional variables when indicated
	Abiotic heterogeneity	Soil
		Water
		Air
		Habitat
		Additional variables when indicated
ECOSYSTEM PROCESSES		
	Energy budget	Input
		Storage
		Output
		Other state variables when indicated
		Efficiency measures
	Matter budget	Input
		Storage
		Output
		Other state variables when indicated
		Efficiency measures
	Water budget	Input
		Storage
		Output
		Other state variables when indicated
		Efficiency measures

6 The process of indicator selection

The process was guided by

- (1) assignment of indicators to the conceptual framework of ecological integrity,
- (2) including as much expert knowledge as possible and
- (3) applying a participative, bottom-up approach which aims at including the LTER community and especially the site managers who are intended as the end users of selected indicator sets.

The main steps towards this target were several EnvEurope workshops (Halle 2010, Budapest 2011, Rome 2011, Bucharest 2011) with group working dedicated to this issue and furthermore by demanding email requests to EnvEurope and EXPEER partners to amend and contribute to a continuously increasing table of indicators, parameters and a lot of descriptive characteristics.

The first prioritisation of the best indicators targeting at the higher ecological integrity indicators was done by "acclamation" and group discussion based on expert experience and knowledge. The next step has to go back to the basic criteria for indicator selection. They need to be

- biologically relevant (maintaining balanced communities)
- providing univocal information
- broadly applicable to many sites and stressors
- Integrative (biotic indicators)
- interpretable: distinguishing "good from bad" states
- and last but not least cost-effective: maximum information per unit effort

The review of the indicators presented in the fact sheets of this manual will be an iterative process which again needs to be done with the support of the LTER community.

Of course the importance or applicability of several indicators will be habitat-specific which again will increase their numbers. Just imagine the differences in the approaches for forests or semi-dry grasslands or deserts. Some basic or core indicators will be the same, but there will be specific sets important for a certain habitat only.

For the final "distillation" of all indicators down to a manageable set the fruitful combinations of certain parameters creating most added value will be considered. This supports strongly the criterion of cost-effectiveness. An example for the added value of the combination of certain parameters is bird species richness + habitat mapping + richness of vascular plants.

In October 2012 an online survey in the LTER community started aiming to provide a ranking of the parameters of this manual according to criteria of IMPORTANCE and COSTS: (1) ecological relevance, (2) sensitivity to environmental changes (ecological responsiveness), (3) measurement effort related to the total working time needed to generate ecologically meaningful data for an interval of one year, (4) the level of instrumentation in terms of the financial effort (equipment, consumables) for an interval of one year. The main aim of this ranking was to create a sound base for qualified recommendations of parameters for (long term) ecosystem research and monitoring. The survey will be closed by the end of February 2013 and the results will be included in the next update of this manual.

7 Fact sheets: Recommendations for Indicators and Parameters

The fact sheet section provides the list of fact sheets for each indicator (which can be a parameter itself) or parameter which was proposed to be important and representative for the base ecological integrity indicators listed in table 1.

Each indicator fact sheet gives basic information of parameters for the different ecosystems. The information preceding each fact sheet is intended to assign an indicator to

- 1. the first level components of Ecological Integrity: Ecosystem Structures and Ecosystem Processes
- 2. the second level components of Ecological Integrity: (1) **Biotic Diversity** and (2) **Abiotic Heterogeneity**; (3) **Energy**, (4) **Matter**, and (5) **Water budget**
- 3. the base Ecological Integrity indicator. e.g. **Flora Diversity**Parameter characteristics

The parameter characteristics are the backbone of the fact sheets. All information about an indicator and / or parameter is considered as "data" in this context. This approach of characterizing indicators is chosen in order to create a matrix for comparison and comparability of indicators. The comparability of data is often related to certain basic features like frequency of measurements, spatial scale covered etc. Method references are separated according to national / international use. Only those references described in English and applied at an international level (or intended to become a kind of international standard) are recommended for LTER-Europe-wide use.

List of fact sheet data characteristics:

- **Manageable Indicator** Indicator related to the Ecological Integrity framework in a way that it is covering aspects of a basic Ecological Integrity Indicator (e.g. energy input, see table 1)
- **Parameter targeting at the manageable indicator** This is the item to be measured. Sometimes the parameter is identical with the indicator.
- **Important related indices** These are related to the described parameter in a way that the parameter is a component of the related index (e.g. species richness; a related index is Shannon diversity)
- **Property: Frequency** How often a parameter should be measured within a certain time.
- **Property: Precision** Resolution in terms of taxonomic level, device generated data in time and digits etc.
- **Property: Time scale (incl. seasonality); temporal resolution** Time of the season when measurements should be performed; accuracy of temporal resolution (e.g. seconds, minutes, hours)
- Property: Basic spatial scale Spatial scale (plot size up to landscape) of measurement
- Property: Base Units Recommended units, e.g. m, mm, mmol
- Mandatory meta data Sufficient to characterize the parameter and the method
- Method applied (key phrases) Short method characterization
- **Method references** (specific to sites, not internationally applied) Only nationally or by a certain institution approved and applied, mostly only in national language available
- **Method references** (established, internationally applied) Elaborated, internationally applied and proved methods, available in English

Not included yet:

- Method used by international networks names of networks applying this method
- **Parameter used by modelling community** important to increase synergies between field measurements and modellers
- **SITES using this method** (list) site identifiers or site names; important for knowledge exchange about exact protocols and popularity of a method

8 References – sorted by topics

8.1 Ecological Integrity

(Burkhard, Kroll, Nedkov, & Muller, 2012; *Ecological Integrity: Integrating Environment, Conservation, and Health*, 2000; Grumbine, 1994; Karr, 1993; Karr & Dudley, 1981; Müller, Hoffmann-Kroll, & Wiggering, 2000; Noss, 1990; Schoolmaster, Grace, & Schweiger, 2012)

- Burkhard, B., Kroll, F., Nedkov, S., & Muller, F. (2012). Mapping ecosystem service supply, demand and budgets. *Ecological Indicators, 21*, 17-29.
- *Ecological Integrity: Integrating Environment, Conservation, and Health.* (2000). Island Press; 1 edition (November 1, 2000).
- Grumbine, R. E. (1994). What is ecosystem management? [Article]. *Conservation Biology, 8*(1), 27-38.
- Karr, J. R. (1993). Defining and assessing ecological integrity beyond water quality. [Article]. *Environmental Toxicology and Chemistry*, *12*(9), 1521-1531.
- Karr, J. R., & Dudley, D. R. (1981). Ecological Perspective on Water-Quality Goals. *Environmental Management*, 5(1), 55-68.
- Müller, F., Hoffmann-Kroll, R., & Wiggering, H. (2000). Indicating ecosystem integrity theoretical concepts and environmental requirements. *Ecological Modelling*, 130(1-3), 13-23.
- Noss, R. F. (1990). Can we maintain biological and ecological integrity? [Editorial Material]. *Conservation Biology*, *4*(3), 241-243.
- Schoolmaster, D. R., Grace, J. B., & Schweiger, E. W. (2012). A general theory of multimetric indices and their properties. [Article]. *Methods in Ecology and Evolution*, *3*(4), 773-781.

8.2 Terrestrial

(Anderson & Domsch, 1978; British Trust for Ornithology; Butterbach-Bahl, Gasche, Breuer, & Papen, 1997; Dierschke, 1994; Dobbertin & Neumann, 2010; Espelta, Cortés, Molowny-Horas, Sánchez-Humanes, & Retana, 2008; European Commision DG Environment, 2007; European Environment Agency; "Field book for describing and sampling soils (Version 2.0)," 2002; Filippa, Freppaz, Williams, & Zanini, 2010; Finnish Environment Institute, 2004; "The GLORIA* Field Manual – Multi-Summit Approach (*Global Observation Research Initiative in Alpine Environments)," 2011; Granke, 2006; Harmon et al., 1986; Hillel, 1980; Holub et al., 2005; ICOS; ICP IM Programme Centre Finnish Environment Institute (Helsinki, 2003; Ilvesniemi et al., 2009; Ilvesniemi et al., 2010; International Union of Soil Sciences Working Group WRB, 2006; Jakucs, 1985; Kumar & Monteith, 1982; Lawson, Lamar, & Schwartz, 2008; Petriccione, 2005; Pollard, 1977; Pollard & Yates, 1994; Reich et al., 2012; Rossi, Parolo, & Ulian, 2009; Rossi, Parolo, Zonta, Crawford, & Leonardi, 2006; Rothe, Huber, Kreutzer, & Weis, 2002; Soil Staff Survey, 2010; Sparks, Jaroszewicz, Krawczyk, & Tryjanowski, 2009; Angela Stanisci, Carranza, Pelino, & Chiarucci, 2011; A. Stanisci, Pelino, & Blasi, 2005; Sutherland, 2006; Sykes, 1996; Toth, Papp, & Lenkey, 1975; UNECE (United Nations Economic Commission for Europe), 2010; United Kingdom Butterfly Monitoring Scheme; Vesala et al., 2005; Voříšek, Klvaňová, Wotton, & Gregory, 2008; Wikum & Shanholtzer, 1978; WMO Observing and Information Systems Department; Woiwod, 1996; World Meteorological Organization, 2010; World Meterological Organization, 2008, 2008 (Updated in 2010))

- Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. *Soil Biology and Biochemistry*, *10*(3), 215-221.
- British Trust for Ornithology. Volunteer surveys Download forms & instructions. from <u>http://www.bto.org/volunteer-surveys/bbs/taking-part/download-forms-instructions</u>
- Butterbach-Bahl, K., Gasche, R., Breuer, L., & Papen, H. (1997). Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions. *Nutrient Cycling in Agroecosystems, 48*(1), 79-90.
- Dierschke, H. (1994). *Pflanzensoziologie*. Stuttgart: Verlag Eugen Ulmer.
- Dobbertin, M., & Neumann, M. (2010). Tree Growth. Manual Part V, Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (pp. 29). Hamburg: UNECE ICP Forests Programme Co-ordinating Centre.
- Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B., & Retana, J. (2008). Masting mediated by summer drought reduces acron predation in mediterranean oak forests. *Ecology*, *89*(3), 805-817.
- European Commision DG Environment. (2007). Interpretation manual of European Union habitatspp. 144). Available from

http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf

European Environment Agency. Habitat types search. from http://eunis.eea.europa.eu/habitats.jsp

- Field book for describing and sampling soils (Version 2.0). (2002). In P. J. Schoeneberger, D. A. Wysocki, E. C. Benham & W. D. Broderson (Eds.) Available from <u>ftp://ftp-fc.sc.egov.usda.gov/NSSC/Field_Book/FieldBookVer2.pdf</u>, <u>http://leg5.state.va.us/reg_agent/frmView.aspx?Viewid=e16fe002164~1&typ=40&actno=002164&mi</u> me=application/pdf
- Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). *Cold Regions Science and Technology*, *64*(2), 158-166.
- Finnish Environment Institute. (2004). ICP IM manual Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en
- The GLORIA* Field Manual Multi-Summit Approach (*Global Observation Research Initiative in Alpine Environments). (2011). In H. Pauli, M. Gottfried, D. Hohenwallner, K. Reiter, R. Casale & G. Grabherr (Eds.)pp. 89). Available from http://www.gloria.ac.at/downloads/GLORIA MS4 Web english withNOTES201106.pdf

Granke, O. (2006). ForestBIOTA work report - Assessment of Ground Vegetation. In F. R. C. f. F. a. F. Products (Eds.)pp. 20). Available from http://www.forestbiota.org/docs/report GV.pdf

Life08 ENV/IT/000399

Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., et al. (1986). Ecology of coarse woody debris in temperate ecosystems. [Review]. *Advances in Ecological Research*, *15*, 133-302.

Hillel, D. (1980). Fundamentals of soil physics: Academic Press Inc.

- Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., Caldwell, B. A., et al. (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. *Forest Ecology and Management*, 214(1-3), 320-330.
- ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/
- ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from <u>http://www.ymparisto.fi/default.asp?node=6329&lan=en</u>
- Ilvesniemi, H., Levula, J., Ojansuu, R., Kolari, P., Kulmala, L., Pumpanen, J., et al. (2009). Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. *Boreal Environment Research*, 14(4), 731-753.
- Ilvesniemi, H., Pumpanen, J., Duursma, R., Hari, P., Keronen, P., Kolari, P., et al. (2010). Water balance of a boreal Scots pine forest. *Boreal Environment Research*, *15*(4), 375-396.
- International Union of Soil Sciences Working Group WRB. (2006). World reference base for soil resources 2006, A framework for international classification, correlation and communication Available from http://ftp.fao.org/agl/agll/docs/wsrr103e.pdf

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó.

- Kumar, M., & Monteith, J. L. (1982). Remote sensing of crop growth. In H. Smith (Ed.), *Plants and the daylight spectrum* (pp. 133-144). London: Academic Press.
- Lawson, D. M., Lamar, C. K., & Schwartz, M. W. (2008). Quantifying plant population persistence in humandominated landscapes. *Conservation Biology*, *22*(4), 922-928.
- Petriccione, B. (2005). Short-term changes in key plant communities of Central Apennines (Italy). *Acta botanica Gallica*, *152*(4), 545-561.
- Pollard, E. (1977). Method for assessing changes in abundance of butterflies. [Article]. *Biological Conservation*, *12*(2), 115-134.
- Pollard, E., & Yates, T. J. (1994). Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme: Springer.
- Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D. F. B., et al. (2012). Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. *Science*, *336*(6081), 589-592.
- Rossi, G., Parolo, G., & Ulian, T. (2009). Human trampling as a threat factor for the conservation of peripheral plant populations. [Article]. *Plant Biosystems*, *143*(1), 104-113.
- Rossi, G., Parolo, G., Zonta, L. A., Crawford, J. A., & Leonardi, A. (2006). Salix herbacea L. fragmented small population in the N-Apennines (Italy): response to human trampling disturbance. *Biodiversity and Conservation*, *15*(12), 3881-3893.
- Rothe, A., Huber, C., Kreutzer, K., & Weis, W. (2002). Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Hoglwald research in comparison with other European case studies. *Plant and Soil, 240*(1), 33-45.
- Soil Staff Survey. (2010). Keys to Soil Taxonomy. In U. S. D. o. Agriculture & N. R. C. Service (Eds.) Available from http://soils.usda.gov/technical/classification/tax_keys/
- Sparks, T. H., Jaroszewicz, B., Krawczyk, M., & Tryjanowski, P. (2009). Advancing phenology in Europe's last lowland primeval forest: non-linear temperature response. *Climate Research*, *39*(3), 221-226.
- Stanisci, A., Carranza, M., Pelino, G., & Chiarucci, A. (2011). Assessing the diversity pattern of cryophilous plant species in high elevation habitats. *Plant Ecology*, *212*(4), 595-600.
- Stanisci, A., Pelino, G., & Blasi, C. (2005). Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). *Biodiversity and Conservation*, *14*(6), 1301-1318.
- Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available from

http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland 2006 Ecological Census Techniques. pdf

Sykes, J. M. (1996). BB Protocol - Breeding birds. *To record the annual distribution and abundance of breeding birds within selected areas of ECN sites*, from <u>http://www.ecn.ac.uk/measurements/terrestrial/b/bi/bb</u>

Life08 ENV/IT/000399

Manual of Methods

- Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), *Biodegradation et Humification* (pp. 41 58). Sarreguemines: Pierrance Editeur.
- UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from <u>http://icp-forests.net/page/icp-forests-manual</u>
- United Kingdom Butterfly Monitoring Scheme. Methods for recording butterfly transects. from <u>http://www.ukbms.org/Methods.aspx#top</u>
- Vesala, T., Suni, T., Rannik, U., Keronen, P., Markkanen, T., Sevanto, S., et al. (2005). Effect of thinning on surface fluxes in a boreal forest. *Global Biogeochemical Cycles*, 19(2).
- Voříšek, P., Klvaňová, A., Wotton, S., & Gregory, R. D. (2008). A Best Practice Guide for wild bird monitoring schemes. In E. E. B. C. Council) (Eds.) Available from <u>http://www.ebcc.info/index.php?ID=365</u>
- Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. *Environmental Management*, 2(4), 323-329.
- WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html
- Woiwod, I. P. (1996). The ECN butterflies protocol from http://www.ecn.ac.uk/measurements/terrestrial/i/ib
- World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf
- World Meterological Organization. (2008). Guide to Hydrological Practices (WMO-No. 168). In W. M. Organization (Eds.), Volume I Hydrology From Measurement to Hydrological Information (Vol. Vol 1, Available from http://www.hydrology.nl/images/docs/hwrp/WMO_Guide_168_Vol_1_en.pdf
- World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from <u>http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html</u>, <u>http://www.wmo.int/pages/themes/wmoprod/guides.html</u>

8.3 Rivers

(Carpente, 1966; CEN (European Committee for Standardization), 1992a, 1992b, 1996, 1998, 2004a, 2004b, 2005, 2006, 2007; Clesceris, Greenberg, & Eaton, 1999; European Commision DG Environment, 2007; European Commission Environment; European Environment Agency; Fame Consortium, 2004; Finnish Environment Institute, 2004; Golterman, Clymo, & Ohnstad, 1978; Haase et al., 2004; Hillebrand, Durselen, Kirschtel, Pollingher, & Zohary, 1999; ICOS; ICP IM Programme Centre Finnish Environment Institute (Helsinki, 2003; ICP Waters Programme Centre, 2010; Intergovernmental Oceanographic Commission of UNESCO, 2010; ISE - CNR Water Chemistry Laboratory, 2012; ISO (International Organization for Standardization), 1996, 1997, 1999, 2003, 2004, 2005; Kestemont & Goffaux, 2002; Kirchman, Knees, & Hodson, 1985; Novak & Bode, 1992; NS SHARE Project, 2005; Sandin, Friberg, Furse, Clarke, & Larsen, 2004; Schaumburg et al., 2004; Sutherland, 2006; Wetzel & Likens, 1991; Winkler, Beyer, & Gnauck, 1980; WMO Observing and Information Systems Department; World Meteorological Organization, 2010; World Meterological Organization, 2008, 2008 (Updated in 2010); YSI Environmental, 2011)

- Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. [Article]. *Limnology and Oceanography*, *11*(2), 264-&.
- CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality Determination of dissolved oxygen Iodometric method (ISO 5813:1983).
- CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality Determination of dissolved oxygen Electrotechnical probe method (ISO 5814:1990).
- CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996).
- CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality Determination of nitrogen Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997).
- CEN (European Committee for Standardization). (2004a). EN ISO 6878:2004; Water quality Determination of phosphorus Ammonium molybdate spectrometric method (ISO 6878:2004).
- CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003).
- CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality Determination of ammonium nitrogen Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005).
- CEN (European Committee for Standardization). (2006). EN 15204:2006; Water quality Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).
- CEN (European Committee for Standardization). (2007). EN 15460:2007; Water quality Guidance standard for the surveying of macrophytes in lakes.
- Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). *Standard Methods for Examination of Water & Wastewater* (20 ed.).
- European Commision DG Environment. (2007). Interpretation manual of European Union habitatspp. 144). Available from

http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007 07 im.pdf

- European Commission Environment. The EU Water Framework Directive integrated river basin management for Europe. from <u>http://ec.europa.eu/environment/water/water-framework/index_en.html</u>
- European Environment Agency. Habitat types search. from http://eunis.eea.europa.eu/habitats.jsp
- Fame Consortium. (2004). Manual for the application of the European Fish Index EFI, A fish-based method to assess the ecological status of european rivers in support of the Water Framework Directive FAMEpp.
 92). Available from http://fame.boku.ac.at/downloads/manual_Version_Februar2005.pdf
- Finnish Environment Institute. (2004). ICP IM manual Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en
- Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). *Methods for physical and chemical analysis of fresh waters*: Blackwell Scientific.

- Haase, P., Lohse, S., Pauls, S., Schindehutte, K., Sundermann, A., Rolauffs, P., et al. (2004). Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macro invertebrate sampling and sorting. *Limnologica*, *34*(4), 349-365.
- Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *Journal of Phycology*, *35*(2), 403-424.
- ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/
- ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en
- ICP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from <u>http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61</u>
- Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf
- ISE CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from <u>http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=</u> <u>en</u>
- ISO (International Organization for Standardization). (1996). ISO 13395:1996; Water quality -- Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (pp. 18).
- ISO (International Organization for Standardization). (1997). ISO 11905-1:1997; Water quality -- Determination of nitrogen -- Part 1: Method using oxidative digestion with peroxodisulfate (pp. 13).
- ISO (International Organization for Standardization). (1999). ISO 7027:1999; Water quality -- Determination of turbidity (pp. 10).
- ISO (International Organization for Standardization). (2003). ISO 15681-1:2003; Water quality -- Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) -- Part 1: Method by flow injection analysis (FIA).
- ISO (International Organization for Standardization). (2004). ISO 6878:2004; Water quality -- Determination of phosphorus -- Ammonium molybdate spectrometric method.
- ISO (International Organization for Standardization). (2005). ISO 11732:2005; Water quality -- Determination of ammonium nitrogen -- Method by flow analysis (CFA and FIA) and spectrometric detection.
- Kestemont, P., & Goffaux, D. (2002). Metric Selection and Sampling Procedures for FAME (D 4 6), Final Report: Development, Evaluation & Implementation of a Standardised Fish-based Assessment Method for the Ecological Status of European Rivers - A Contribution to the Water Framework Directive (FAME)pp. 90). Available from http://fame.boku.ac.at/downloads/D4 6 metrics and sampling procedure.pdf
- Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of proteinsynthesis by bacteria in natural aquatic systems. [Article]. Applied and Environmental Microbiology, 49(3), 599-607.
- Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. *Journal of the North American Benthological Society*, 11(1), 80-85.
- NS SHARE Project. (2005). North South Shared Aquatic Resource (NS Share): Methods Manual I River Macrophytes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20I%20%20River%20Macrophyte.pdf</u>
- Sandin, L., Friberg, N., Furse, M., Clarke, R., & Larsen, S. (2004). Inter-calibration and harmonisation of "invertebrate methods", Standardisation of river classification: Framework method for calibrating different biological survey results against ecological classifications to be developed for the Water Framework Directivepp. 238). Available from http://www.eu-star.at/pdf/Deliverable8.pdf
- Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, P., et al. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. *Limnologica*, *34*(4), 283-301.
- Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available from

Life08 ENV/IT/000399

http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland_2006_Ecological_Census_Techniques.pdf

Wetzel, R. G., & Likens, G. E. (1991). *Limnological Analyses*. New York: Springer.

- Winkler, W., Beyer, J., & Gnauck, A. (1980). Improvement of the accuracy of prediction of stochastic models of the oxygen concentration in flowing waters. [Article]. *Acta Hydrochimica Et Hydrobiologica, 8*(1), 107-110.
- WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html
- World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf
- World Meterological Organization. (2008). Guide to Hydrological Practices (WMO-No. 168). In W. M. Organization (Eds.), Volume I Hydrology From Measurement to Hydrological Information (Vol. Vol 1, Available from http://www.hydrology.nl/images/docs/hwrp/WMO_Guide_168_Vol_I_en.pdf
- World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from <u>http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html</u>, <u>http://www.wmo.int/pages/themes/wmoprod/guides.html</u>
- YSI Environmental. (2011). The Basics of Chlorophyll Measurement. from http://www.ysi.com/parametersdetail.php?Chlorophyll-6

8.4 Lakes

(Bíró, Specziár, & Keresztessy, 2003; Bondavalli, Bodini, Rossetti, & Allesina, 2006; Carpente, 1966; CEN (European Committee for Standardization), 1992a, 1992b, 1996, 1998, 2004a, 2004b, 2005, 2006, 2007; Clesceris, Greenberg, & Eaton, 1999; European Commision DG Environment, 2007; European Environment Agency; Finnish Environment Institute, 2004; Gerking, 1957; Golterman, Clymo, & Ohnstad, 1978; Hillebrand, Durselen, Kirschtel, Pollingher, & Zohary, 1999; ICOS; ICP IM Programme Centre Finnish Environment Institute (Helsinki, 2003; ICP Waters Programme Centre, 2010; Intergovernmental Oceanographic Commission of UNESCO, 2010; ISE - CNR Water Chemistry Laboratory, 2012; ISO (International Organization for Standardization), 1996, 1997, 2003, 2004, 2005; Kirchman, Knees, & Hodson, 1985; MacIsaac & Stockner, 1993; Nõges et al., 2003; Noges et al., 2003; Novak & Bode, 1992; NS SHARE Project, 2005a, 2005b, 2005c, 2005d; Ozimek & Kowalczewski, 1984; Parpală, G.-Tóth, Zinevici, Németh, & Szalontai, 2003; Schaumburg et al., 2004; Slusarczyk, 2009; Specziár & Bíró, 1998; Sutherland, 2006; Tolonen & Hamalainen, 2010; Wellburn, 1994; Wetzel & Likens, 1991; Wiederholm, 1980; WMO Observing and Information Systems Department; World Meteorological Organization, 2010; World Meteorological Organization, 2008, (Updated in 2010); YSI Environmental, 2011)

- Bíró, P., Specziár, A., & Keresztessy, K. (2003). Diversity of fish species assemblages distributed in the drainage area of Lake Balaton (Hungary). *Hydrobiologia*, *506-509*(1), 459-464.
- Bondavalli, C., Bodini, A., Rossetti, G., & Allesina, S. (2006). Detecting stress at the whole-ecosystem level: The case of a mountain lake (Lake Santo, Italy). [Article]. *Ecosystems*, *9*(5), 768-787.
- Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. [Article]. *Limnology* and Oceanography, 11(2), 264-&.
- CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality Determination of dissolved oxygen Iodometric method (ISO 5813:1983).
- CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality Determination of dissolved oxygen Electrotechnical probe method (ISO 5814:1990).
- CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996).
- CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality Determination of nitrogen Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997).
- CEN (European Committee for Standardization). (2004a). EN ISO 6878:2004; Water quality Determination of phosphorus Ammonium molybdate spectrometric method (ISO 6878:2004).
- CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003).
- CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality Determination of ammonium nitrogen Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005).
- CEN (European Committee for Standardization). (2006). EN 15204:2006; Water quality Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).
- CEN (European Committee for Standardization). (2007). EN 15460:2007; Water quality Guidance standard for the surveying of macrophytes in lakes.
- Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). *Standard Methods for Examination of Water & Wastewater* (20 ed.).
- European Commision DG Environment. (2007). Interpretation manual of European Union habitatspp. 144). Available from

<u>http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf</u> European Environment Agency. Habitat types search. from <u>http://eunis.eea.europa.eu/habitats.jsp</u> Life08 ENV/IT/000399

Finnish Environment Institute. (2004). ICP IM manual - Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en

- Gerking, S. D. (1957). A Method of Sampling the Littoral Macrofauna and Its Application. *Ecology, 38*(2), 219-226.
- Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). *Methods for physical and chemical analysis of fresh waters*: Blackwell Scientific.
- Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *Journal of Phycology*, *35*(2), 403-424.

ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/

- ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from <u>http://www.ymparisto.fi/default.asp?node=6329&lan=en</u>
- ICP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61
- Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf
- ISE CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from <u>http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&lang=</u> <u>en</u>
- ISO (International Organization for Standardization). (1996). ISO 13395:1996; Water quality -- Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (pp. 18).
- ISO (International Organization for Standardization). (1997). ISO 11905-1:1997; Water quality -- Determination of nitrogen -- Part 1: Method using oxidative digestion with peroxodisulfate (pp. 13).
- ISO (International Organization for Standardization). (2003). ISO 15681-1:2003; Water quality -- Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) -- Part 1: Method by flow injection analysis (FIA).
- ISO (International Organization for Standardization). (2004). ISO 6878:2004; Water quality -- Determination of phosphorus -- Ammonium molybdate spectrometric method.
- ISO (International Organization for Standardization). (2005). ISO 11732:2005; Water quality -- Determination of ammonium nitrogen -- Method by flow analysis (CFA and FIA) and spectrometric detection.
- Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of proteinsynthesis by bacteria in natural aquatic systems. [Article]. *Applied and Environmental Microbiology*, 49(3), 599-607.
- MacIsaac, E. A., & Stockner, J. G. (1993). Enumeration of phototrophic picoplankton by autofluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), *Handbook of methods in aquatic* microbial ecology (pp. 187-198). Boca Raton, Fla: Crc Pr Inc.
- Nõges, P., Nõges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijów, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. *Hydrobiologia*, *506-509*(1), 51-58.
- Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. *Hydrobiologia*, 506(1-3), 51-58.
- Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. *Journal of the North American Benthological Society*, 11(1), 80-85.
- NS SHARE Project. (2005a). North South Shared Aquatic Resource (NS Share): Methods Manual II Lake Macrophytes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20II%20Lake%20Macrophyte.pdf</u>
- NS SHARE Project. (2005b). North South Shared Aquatic Resource (NS Share): Methods Manual III Littoral Macroinvertebrates - Lakes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20III%20Littoral%20Invertebrates%20Lakes/Methods%20Manual%20III%20Littoral%20Invertebrates%20Lakes.pdf</u>

Life08 ENV/IT/000399

- NS SHARE Project. (2005c). North South Shared Aquatic Resource (NS Share): Methods Manual IV Profundal/Sub-littoral Macroinvertebrates - Lakes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20IV%20Profundal%20-</u> <u>sublittoral%20invertebrates%20Lakes/Methods Manual_IV%20Profundal_sublittoral%20invertebrate</u> s%20lakes.pdf
- NS SHARE Project. (2005d). North South Shared Aquatic Resource (NS Share): Methods Manual V Fish. Retrieved from

http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20 Manuals%20T1/Methods%20Manual%20V%20Fish/Methods%20Manual%20V%20Fish.pdf

- Ozimek, T., & Kowalczewski, A. (1984). Long-term changes of the submerged macrophytes in eutrophic lake Mikolajskie (North Poland). [Article]. *Aquatic Botany*, *19*(1-2), 1-11.
- Parpală, L., G.-Tóth, L., Zinevici, V., Németh, P., & Szalontai, K. (2003). Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. *Hydrobiologia*, *506-509*(1), 347-351.
- Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S., & Schmedtje, U. (2004). Macrophytes and phytobenthos as indicators of ecological status in German lakes a contribution to the implementation of the Water Framework Directive. *Limnologica*, *34*(4), 302-314.
- Slusarczyk, M. (2009). Extended lifespan traded for diapause in Daphnia. *Freshwater Biology*, 54(11), 2252-2262.
- Specziár, A., & Bíró, P. (1998). Spatial distribution and short-term changes of benthic macrofauna in Lake Balaton (Hungary). *Hydrobiologia*, *389*(1), 203-216.
- Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available from

http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland 2006 Ecological Census Techniques. pdf

- Tolonen, K. T., & Hamalainen, H. (2010). Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. *Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176*(1), 43-59.
- Wellburn, A. R. (1994). The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotinoids, using various solvents with spectrophotometers of different resolution. *Journal of Plant Physiology*, 144(3), 307-313.
- Wetzel, R. G., & Likens, G. E. (1991). Limnological Analyses. New York: Springer.
- Wiederholm, T. (1980). Use of Benthos in Lake Monitoring. *Journal (Water Pollution Control Federation), 52*(3), 537-547.
- WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html
- World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf
- World Meterological Organization. (2008). Guide to Hydrological Practices (WMO-No. 168). In W. M. Organization (Eds.), Volume I Hydrology From Measurement to Hydrological Information (Vol. Vol 1, Available from http://www.hydrology.nl/images/docs/hwrp/WMO_Guide_168_Vol_I_en.pdf
- World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from <u>http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html</u>, <u>http://www.wmo.int/pages/themes/wmoprod/guides.html</u>
- YSI Environmental. (2011). The Basics of Chlorophyll Measurement. from http://www.ysi.com/parametersdetail.php?Chlorophyll-6

8.5 Marine

(Buia, Gambi, & Dappiano, 2004; Carpente, 1966; CEN (European Committee for Standardization), 1992a, 1992b, 1996, 1998, 2004a, 2004b, 2005, 2006, 2007; Clesceris, Greenberg, & Eaton, 1999; European Commision DG Environment, 2007; European Environment Agency; Hansen & Koroleff, 2007; Hillebrand, Durselen, Kirschtel, Pollingher, & Zohary, 1999; "ICES Zooplankton Methodology Manual," 2000; ICOS; ICP Waters Programme Centre, 2010; Intergovernmental Oceanographic Commission of UNESCO, 2010; ISE - CNR Water Chemistry Laboratory, 2012; ISO (International Organization for Standardization), 1996, 1997, 2003, 2004, 2005; Kirchman, Knees, & Hodson, 1985; Krause-Jensen, Sagert, Schubert, & Bostrom, 2008; Lopez y Royo et al., 2010; Lorenti & De Falco, 2004; MacIsaac & Stockner, 1993; Migliaccio, De Martino, Silvestre, & Procaccini, 2005; Orfanidis, Panayotidis, & Stamatis, 2001; Robinson & Williams, 2005; Steeman-Nielsen, 1952; Steinhardt, Karez, Selig, & Schubert, 2009; Strickland & Parsons, 1972; Sutherland, 2006; Wellburn, 1994; WMO Observing and Information Systems Department; World Meteorological Organization, 2010; World Meteorological Organization, 2008 (Updated in 2010); YSI Environmental, 2011; Zupo, Buia, Gambi, Lorenti, & Procaccini, 2006)

- Buia, M. C., Gambi, M., & Dappiano, M. (2004). Seagrass Systems *Biologia Marina Mediterranea* (Vol. 11, pp. 133-183).
- Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. [Article]. *Limnology and Oceanography*, *11*(2), 264-&.
- CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality Determination of dissolved oxygen Iodometric method (ISO 5813:1983).
- CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality Determination of dissolved oxygen Electrotechnical probe method (ISO 5814:1990).
- CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996).
- CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality Determination of nitrogen Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997).
- CEN (European Committee for Standardization). (2004a). EN ISO 6878:2004; Water quality Determination of phosphorus Ammonium molybdate spectrometric method (ISO 6878:2004).
- CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003).
- CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality Determination of ammonium nitrogen Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005).
- CEN (European Committee for Standardization). (2006). EN 15204:2006; Water quality Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).
- CEN (European Committee for Standardization). (2007). EN 15460:2007; Water quality Guidance standard for the surveying of macrophytes in lakes.
- Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). *Standard Methods for Examination of Water & Wastewater* (20 ed.).
- European Commision DG Environment. (2007). Interpretation manual of European Union habitatspp. 144). Available from

http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf

European Environment Agency. Habitat types search. from <u>http://eunis.eea.europa.eu/habitats.jsp</u>

- Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), *Methods of Seawater Analysis* (3. ed.). Weinheim: Wiley-VCH Verlag GmbH.
- Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *Journal of Phycology*, *35*(2), 403-424.

ICES Zooplankton Methodology Manual. (2000). In R. Harris, P. Wiebe, J. Lenz, H.-R. Skjoldal & M. Huntley (Eds.) Available from <u>http://www.sciencedirect.com/science/book/9780123276452</u>

- ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/
- ICP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61
- Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf
- ISE CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from <u>http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&lang=</u> <u>en</u>
- ISO (International Organization for Standardization). (1996). ISO 13395:1996; Water quality -- Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (pp. 18).
- ISO (International Organization for Standardization). (1997). ISO 11905-1:1997; Water quality -- Determination of nitrogen -- Part 1: Method using oxidative digestion with peroxodisulfate (pp. 13).
- ISO (International Organization for Standardization). (2003). ISO 15681-1:2003; Water quality -- Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) -- Part 1: Method by flow injection analysis (FIA).
- ISO (International Organization for Standardization). (2004). ISO 6878:2004; Water quality -- Determination of phosphorus -- Ammonium molybdate spectrometric method.
- ISO (International Organization for Standardization). (2005). ISO 11732:2005; Water quality -- Determination of ammonium nitrogen -- Method by flow analysis (CFA and FIA) and spectrometric detection.
- Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of proteinsynthesis by bacteria in natural aquatic systems. [Article]. Applied and Environmental Microbiology, 49(3), 599-607.
- Krause-Jensen, D., Sagert, S., Schubert, H., & Bostrom, C. (2008). Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. [Review]. *Ecological Indicators*, 8(5), 515-529.
- Lopez y Royo, C., Pergent, G., Alcoverro, T., Buia, M. C., Casazza, G., Martínez-Crego, B., et al. (2010). The seagrass Posidonia oceanica as indicator of coastal water quality: Experimental intercalibration of classification systems. *Ecological Indicators*, 7.
- Lorenti, M., & De Falco, G. (2004). Measurement and characterization of abiotic variables *Biologica Marina Mediterranea* (Vol. 11, pp. 38).
- MacIsaac, E. A., & Stockner, J. G. (1993). Enumeration of phototrophic picoplankton by autofluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), *Handbook of methods in aquatic* microbial ecology (pp. 187-198). Boca Raton, Fla: Crc Pr Inc.
- Migliaccio, M., De Martino, F., Silvestre, F., & Procaccini, G. (2005). Meadow-scale genetic structure in Posidonia oceanica. [Article]. *Marine Ecology-Progress Series, 304*, 55-65.
- Orfanidis, S., Panayotidis, P., & Stamatis, N. (2001). Ecological evaluation of transitional and coastal waters: A marine benthic macrophytes-based model. *Mediterranean Marine Science*, 2(2), 20.
- Robinson, C., & Williams, P. I. B. (2005). Respiration and its measurement in surface marine waters. In P. A. del Giorgio & P. I. B. Williams (Eds.), *Respiration in Aquatic Ecosystems* (pp. 147-180). Oxford (UK): Oxford University Press.
- Steeman-Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer, 18, 23.
- Steinhardt, T., Karez, R., Selig, U., & Schubert, H. (2009). The German procedure for the assessment of ecological status in relation to the biological quality element "Macroalgae & Angiosperms" pursuant to the European Water Framework Directive (WFD) for inner coastal waters of the Baltic Sea. *Rostocker Meeresbiologische Beitrage, 22*, 7-42.
- Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. *Canada Fisheries Research Board Bulletin*.
- Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available <u>http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland 2006 Ecological Census Techniques.</u> pdf

- Wellburn, A. R. (1994). The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotinoids, using various solvents with spectrophotometers of different resolution. *Journal of Plant Physiology*, 144(3), 307-313.
- WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html
- World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf
- World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from <u>http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html</u>, <u>http://www.wmo.int/pages/themes/wmoprod/guides.html</u>
- YSI Environmental. (2011). The Basics of Chlorophyll Measurement. from http://www.ysi.com/parametersdetail.php?Chlorophyll-6
- Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M., & Procaccini, G. (2006). Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. [Article]. *Marine Ecology-an Evolutionary Perspective, 27*(4), 328-338.

9 References - alphabetically

(Anderson & Domsch, 1978; Bíró, Specziár, & Keresztessy, 2003; Bondavalli, Bodini, Rossetti, & Allesina, 2006; Braun-Blanquet, 1932; British Trust for Ornithology; Buia, Gambi, & Dappiano, 2004; Burkhard, Kroll, Müller, & Windhorst, 2009; Burkhard, Kroll, Nedkov, & Muller, 2012; Butterbach-Bahl, Gasche, Breuer, & Papen, 1997; Cadotte et al., 2010; Carpente, 1966; CEN (European Committee for Standardization), 1992a, 1992b, 1996, 1998, 2004a, 2004b, 2005, 2006, 2007; Cerny, 1999; Clesceris, Greenberg, & Eaton, 1999; Dierschke, 1994; Dobbertin & Neumann, 2010; Ecological Integrity: Integrating Environment, Conservation, and Health, 2000; Espelta, Cortés, Molowny-Horas, Sánchez-Humanes, & Retana, 2008; Estación Biológica de Doñana CSIC; European Commision DG Environment, 2007; European Commission Environment; European Environment Agency; Fame Consortium, 2004; "Field book for describing and sampling soils (Version 2.0)," 2002; Filippa, Freppaz, Williams, & Zanini, 2010; Finnish Environment Institute, 2004; Gerking, 1957; Global Seagrass Research Methods, 2001; "The GLORIA* Field Manual – Multi-Summit Approach (*Global Observation Research Initiative in Alpine Environments)," 2011; Golterman, Clymo, & Ohnstad, 1978; Granke, 2006; Grumbine, 1994; Haase et al., 2004; Hansen & Koroleff, 2007; Harmon et al., 1986; Hellawell, 1991; Hillebrand, Durselen, Kirschtel, Pollingher, & Zohary, 1999; Hillel, 1980; Holub et al., 2005; "ICES Zooplankton Methodology Manual," 2000; ICOS; ICP IM Programme Centre Finnish Environment Institute (Helsinki, 2003; ICP Waters Programme Centre, 2010; Ilvesniemi et al., 2009; Ilvesniemi et al., 2010; Intergovernmental Oceanographic Commission of UNESCO, 2010; International Union of Soil Sciences Working Group WRB, 2006; ISE - CNR Water Chemistry Laboratory, 2012; ISO (International Organization for Standardization), 1996, 1997, 1999, 2003, 2004, 2005; Jakucs, 1985; JM Hellawell; Kanalas et al., 2010; Karr, 1993; Karr & Dudley, 1981; Kestemont & Goffaux, 2002; Kirchman, Knees, & Hodson, 1985; Krause-Jensen, Sagert, Schubert, & Bostrom, 2008; Kumar & Monteith, 1982; Lawson, Lamar, & Schwartz, 2008; Lopez y Royo et al., 2010; Lorenti & De Falco, 2004; MacIsaac & Stockner, 1993; McNeill et al., 2006; Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 1986; Methods of Soil Analysis. Part 3. Chemical Methods, 1996; Migliaccio, De Martino, Silvestre, & Procaccini, 2005; Morris & Doak, 2002; Müller, Hoffmann-Kroll, & Wiggering, 2000; Nõges et al., 2003; Noges et al., 2003; Noss, 1990; Novak & Bode, 1992; NS SHARE Project, 2005a, 2005b, 2005c, 2005d, 2005e; Orfanidis, Panayotidis, & Stamatis, 2001; Ozimek & Kowalczewski, 1984; Parpală, G.-Tóth, Zinevici, Németh, & Szalontai, 2003; Petchey, O'Gorman, & Flynn, 2009; Petriccione, 2005; Pollard, 1977; Pollard & Yates, 1994; Reich et al., 2012; Robinson & Williams, 2005; Rossi, Parolo, & Ulian, 2009; Rossi, Parolo, Zonta, Crawford, & Leonardi, 2006; Rothe, Huber, Kreutzer, & Weis, 2002; Sandin, Friberg, Furse, Clarke, & Larsen, 2004; Schaumburg, Schranz, Foerster, et al., 2004; Schaumburg, Schranz, Hofmann, et al., 2004; Schoolmaster, Grace, & Schweiger, 2012; Slusarczyk, 2009; Soil Staff Survey, 2010; Sparks, Jaroszewicz, Krawczyk, & Tryjanowski, 2009; Specziár & Bíró, 1998; Angela Stanisci, Carranza, Pelino, & Chiarucci, 2011; A. Stanisci, Pelino, & Blasi, 2005; Statistic Netherlands, 2006; Steeman-Nielsen, 1952; Steinhardt, Karez, Selig, & Schubert, 2009; Strickland & Parsons, 1972; Sutherland, 2006; Sykes, 1996; Tolonen & Hamalainen, 2010; Toth, Papp, & Lenkey, 1975; UNECE (United Nations Economic Commission for Europe), 2010; United Kingdom Butterfly Monitoring Scheme; Vesala et al., 2005; Voříšek, Klvaňová, Wotton, & Gregory, 2008; Wellburn, 1994; Wetzel & Likens, 1991; Wiederholm, 1980; Wikum & Shanholtzer, 1978; Winkler, Beyer, & Gnauck, 1980; WMO Observing and Information Systems Department; Woiwod, 1996; World Meteorological Organization, 2010; World Meterological Organization, 2008, 2008 (Updated in 2010); YSI Environmental, 2011; Zupo, Buia, Gambi, Lorenti, & Procaccini, 2006)

- Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. *Soil Biology and Biochemistry*, *10*(3), 215-221.
- Bíró, P., Specziár, A., & Keresztessy, K. (2003). Diversity of fish species assemblages distributed in the drainage area of Lake Balaton (Hungary). *Hydrobiologia*, *506-509*(1), 459-464.
- Bondavalli, C., Bodini, A., Rossetti, G., & Allesina, S. (2006). Detecting stress at the whole-ecosystem level: The case of a mountain lake (Lake Santo, Italy). [Article]. *Ecosystems*, 9(5), 768-787.
- Braun-Blanquet, J. (1932). *Plant sociology the study of plant communities* (1st ed.): McGraw-Hill book company, inc.

British Trust for Ornithology. Volunteer surveys - Download forms & instructions. from <u>http://www.bto.org/volunteer-surveys/bbs/taking-part/download-forms-instructions</u>

- Buia, M. C., Gambi, M., & Dappiano, M. (2004). Seagrass Systems *Biologia Marina Mediterranea* (Vol. 11, pp. 133-183).
- Burkhard, B., Kroll, F., Müller, F., & Windhorst, W. (2009). Landscape's capacities to provide ecosystem services a concept for land-cover based assessments. *Landscape Online*, *15*(22).
- Burkhard, B., Kroll, F., Nedkov, S., & Muller, F. (2012). Mapping ecosystem service supply, demand and budgets. *Ecological Indicators, 21*, 17-29.
- Butterbach-Bahl, K., Gasche, R., Breuer, L., & Papen, H. (1997). Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions. *Nutrient Cycling in Agroecosystems, 48*(1), 79-90.
- Cadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., & Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. *Ecology Letters*, *13*(1), 96-105.
- Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. [Article]. *Limnology and Oceanography*, *11*(2), 264-&.
- CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality Determination of dissolved oxygen Iodometric method (ISO 5813:1983).
- CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality Determination of dissolved oxygen Electrotechnical probe method (ISO 5814:1990).
- CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996).
- CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality Determination of nitrogen Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997).
- CEN (European Committee for Standardization). (2004a). EN ISO 6878:2004; Water quality Determination of phosphorus Ammonium molybdate spectrometric method (ISO 6878:2004).
- CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003).
- CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality Determination of ammonium nitrogen Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005).
- CEN (European Committee for Standardization). (2006). EN 15204:2006; Water quality Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).
- CEN (European Committee for Standardization). (2007). EN 15460:2007; Water quality Guidance standard for the surveying of macrophytes in lakes.
- Cerny, M. (1999). MOLAR MOuntain LAke Research Measuring and Modelling the Dynamic Response of Remote Mountain Lake Ecosystems to Environmental Change. EU project no. ENV4-CT95-0007 from <u>http://www.mountain-lakes.org/molar/</u>
- Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). *Standard Methods for Examination of Water & Wastewater* (20 ed.).
- Dierschke, H. (1994). Pflanzensoziologie. Stuttgart: Verlag Eugen Ulmer.
- Dobbertin, M., & Neumann, M. (2010). Tree Growth. Manual Part V, Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (pp. 29). Hamburg: UNECE ICP Forests Programme Co-ordinating Centre.
- *Ecological Integrity: Integrating Environment, Conservation, and Health*. (2000). Island Press; 1 edition (November 1, 2000).
- Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B., & Retana, J. (2008). Masting mediated by summer drought reduces acron predation in mediterranean oak forests. *Ecology*, *89*(3), 805-817.
- Estación Biológica de Doñana CSIC. Singular Scientific and Technological Infrastructure. from <u>http://icts.ebd.csic.es/CambiarIdiomaAction.do;jsessionid=DC4D0AC18742FC6CC3A2740B92181DD2.i</u> <u>cts_A?idioma=ingles</u>
- European Commision DG Environment. (2007). Interpretation manual of European Union habitatspp. 144). Available from

http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf

Life08 ENV/IT/000399

European Commission Environment. The EU Water Framework Directive - integrated river basin management for Europe. from http://ec.europa.eu/environment/water/water-framework/index_en.html

European Environment Agency. Habitat types search. from <u>http://eunis.eea.europa.eu/habitats.jsp</u>

- Fame Consortium. (2004). Manual for the application of the European Fish Index EFI, A fish-based method to assess the ecological status of european rivers in support of the Water Framework Directive FAMEpp.
 92). Available from http://fame.boku.ac.at/downloads/manual_Version_Februar2005.pdf
- Field book for describing and sampling soils (Version 2.0). (2002). In P. J. Schoeneberger, D. A. Wysocki, E. C. Benham & W. D. Broderson (Eds.) Available from <u>ftp://ftp-</u> fc.sc.egov.usda.gov/NSSC/Field Book/FieldBookVer2.pdf,

http://leg5.state.va.us/reg_agent/frmView.aspx?Viewid=e16fe002164~1&typ=40&actno=002164&mi me=application/pdf

- Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). *Cold Regions Science and Technology, 64*(2), 158-166.
- Finnish Environment Institute. (2004). ICP IM manual Methodology and Reporting of Subprogrammes. from <u>http://www.ymparisto.fi/default.asp?node=6412&lan=en</u>
- Gerking, S. D. (1957). A Method of Sampling the Littoral Macrofauna and Its Application. *Ecology, 38*(2), 219-226.
- Global Seagrass Research Methods. (2001). Elsevier.
- The GLORIA* Field Manual Multi-Summit Approach (*Global Observation Research Initiative in Alpine Environments). (2011). In H. Pauli, M. Gottfried, D. Hohenwallner, K. Reiter, R. Casale & G. Grabherr (Eds.)pp. 89). Available from

http://www.gloria.ac.at/downloads/GLORIA_MS4_Web_english_withNOTES201106.pdf Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). *Methods for physical and chemical analysis of fresh*

- waters: Blackwell Scientific.
- Granke, O. (2006). ForestBIOTA work report Assessment of Ground Vegetation. In F. R. C. f. F. a. F. Products (Eds.)pp. 20). Available from <u>http://www.forestbiota.org/docs/report_GV.pdf</u>
- Grumbine, R. E. (1994). What is ecosystem management? [Article]. Conservation Biology, 8(1), 27-38.
- Haase, P., Lohse, S., Pauls, S., Schindehutte, K., Sundermann, A., Rolauffs, P., et al. (2004). Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macro invertebrate sampling and sorting. *Limnologica*, *34*(4), 349-365.
- Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), *Methods of Seawater Analysis* (3. ed.). Weinheim: Wiley-VCH Verlag GmbH.
- Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., et al. (1986). Ecology of coarse woody debris in temperate ecosystems. [Review]. Advances in Ecological Research, 15, 133-302.
- Hellawell, J. M. (1991). Development of a rationale for monitoring. In F. B. Goldsmith (Ed.), *Monitoring for conservation and ecology* (pp. 1-14). New York: Chapman and Hall.
- Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *Journal of Phycology*, *35*(2), 403-424.
- Hillel, D. (1980). Fundamentals of soil physics: Academic Press Inc.
- Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., Caldwell, B. A., et al. (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. *Forest Ecology and Management, 214*(1-3), 320-330.
- ICES Zooplankton Methodology Manual. (2000). In R. Harris, P. Wiebe, J. Lenz, H.-R. Skjoldal & M. Huntley (Eds.) Available from <u>http://www.sciencedirect.com/science/book/9780123276452</u>
- ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/
- ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from

http://www.ymparisto.fi/default.asp?node=6329&lan=en

- ICP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from <u>http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61</u>
- Ilvesniemi, H., Levula, J., Ojansuu, R., Kolari, P., Kulmala, L., Pumpanen, J., et al. (2009). Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. *Boreal Environment Research*, 14(4), 731-753.

Ilvesniemi, H., Pumpanen, J., Duursma, R., Hari, P., Keronen, P., Kolari, P., et al. (2010). Water balance of a boreal Scots pine forest. *Boreal Environment Research*, *15*(4), 375-396.

- Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from <u>http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf</u>
- International Union of Soil Sciences Working Group WRB. (2006). World reference base for soil resources 2006, A framework for international classification, correlation and communication Available from http://ftp.fao.org/agl/agll/docs/wsrr103e.pdf

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from <u>http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=</u> <u>en</u>

- ISO (International Organization for Standardization). (1996). ISO 13395:1996; Water quality -- Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (pp. 18).
- ISO (International Organization for Standardization). (1997). ISO 11905-1:1997; Water quality -- Determination of nitrogen -- Part 1: Method using oxidative digestion with peroxodisulfate (pp. 13).
- ISO (International Organization for Standardization). (1999). ISO 7027:1999; Water quality -- Determination of turbidity (pp. 10).
- ISO (International Organization for Standardization). (2003). ISO 15681-1:2003; Water quality -- Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) -- Part 1: Method by flow injection analysis (FIA).
- ISO (International Organization for Standardization). (2004). ISO 6878:2004; Water quality -- Determination of phosphorus -- Ammonium molybdate spectrometric method.
- ISO (International Organization for Standardization). (2005). ISO 11732:2005; Water quality -- Determination of ammonium nitrogen -- Method by flow analysis (CFA and FIA) and spectrometric detection.
- Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó.
- JM Hellawell, D. o. a. r. f. m., in: Monitoring for conservation and ecology (1991), Goldsmith, FB (ed.), Chapman and Hall, NY, pp.1-14.
- Kanalas, P., Fenyvesi, A., Kis, J., Szollosi, E., Olah, V., Ander, I., et al. (2010). Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in ralation to microclimatic conditions. Acta Biologica Hungarica, 61, 95-108.
- Karr, J. R. (1993). Defining and assessing ecological integrity beyond water quality. [Article]. *Environmental Toxicology and Chemistry*, *12*(9), 1521-1531.
- Karr, J. R., & Dudley, D. R. (1981). Ecological Perspective on Water-Quality Goals. *Environmental Management*, 5(1), 55-68.
- Kestemont, P., & Goffaux, D. (2002). Metric Selection and Sampling Procedures for FAME (D 4 6), Final Report: Development, Evaluation & Implementation of a Standardised Fish-based Assessment Method for the Ecological Status of European Rivers - A Contribution to the Water Framework Directive (FAME)pp. 90). Available from

http://fame.boku.ac.at/downloads/D4_6_metrics_and_sampling_procedure.pdf

- Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of proteinsynthesis by bacteria in natural aquatic systems. [Article]. *Applied and Environmental Microbiology*, 49(3), 599-607.
- Krause-Jensen, D., Sagert, S., Schubert, H., & Bostrom, C. (2008). Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. [Review]. *Ecological Indicators, 8*(5), 515-529.
- Kumar, M., & Monteith, J. L. (1982). Remote sensing of crop growth. In H. Smith (Ed.), *Plants and the daylight spectrum* (pp. 133-144). London: Academic Press.
- Lawson, D. M., Lamar, C. K., & Schwartz, M. W. (2008). Quantifying plant population persistence in humandominated landscapes. *Conservation Biology*, 22(4), 922-928.
- Lopez y Royo, C., Pergent, G., Alcoverro, T., Buia, M. C., Casazza, G., Martínez-Crego, B., et al. (2010). The seagrass Posidonia oceanica as indicator of coastal water quality: Experimental intercalibration of classification systems. *Ecological Indicators*, 7.
- Lorenti, M., & De Falco, G. (2004). Measurement and characterization of abiotic variables *Biologica Marina Mediterranea* (Vol. 11, pp. 38).

Life08 ENV/IT/000399

MacIsaac, E. A., & Stockner, J. G. (1993). Enumeration of phototrophic picoplankton by autofluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), *Handbook of methods in aquatic microbial ecology* (pp. 187-198). Boca Raton, Fla: Crc Pr Inc.

- McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L., Marhold, K., et al. (2006). International Code of Botanical Nomenclature (Vienna Code). In J. McNeill (Eds.), Regnum Vegetatible (Vol. 146, Available from <u>http://ibot.sav.sk/icbn/main.htm</u>
- Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. (1986).
- Methods of Soil Analysis. Part 3. Chemical Methods. (1996).
- Migliaccio, M., De Martino, F., Silvestre, F., & Procaccini, G. (2005). Meadow-scale genetic structure in Posidonia oceanica. [Article]. *Marine Ecology-Progress Series, 304*, 55-65.
- Morris, W. F., & Doak, D. F. (2002). *Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis*.
- Müller, F., Hoffmann-Kroll, R., & Wiggering, H. (2000). Indicating ecosystem integrity theoretical concepts and environmental requirements. *Ecological Modelling*, 130(1-3), 13-23.
- Nõges, P., Nõges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijów, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. *Hydrobiologia*, *506-509*(1), 51-58.
- Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. *Hydrobiologia*, 506(1-3), 51-58.
- Noss, R. F. (1990). Can we maintain biological and ecological integrity? [Editorial Material]. *Conservation Biology*, *4*(3), 241-243.
- Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. *Journal of the North American Benthological Society*, 11(1), 80-85.

NS SHARE Project. (2005a). North South Shared Aquatic Resource (NS Share): Methods Manual I River Macrophytes. Retrieved from http://www.psshare.com/publications/documents/Ecological%20Classification%20Tools/Method

http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20 Manuals%20T1/Methods%20Manual%20I%20%20River%20Macrophyte.pdf

- NS SHARE Project. (2005b). North South Shared Aquatic Resource (NS Share): Methods Manual II Lake Macrophytes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20II%20Lake%20Macrophyte.pdf</u>
- NS SHARE Project. (2005c). North South Shared Aquatic Resource (NS Share): Methods Manual III Littoral Macroinvertebrates - Lakes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20III%20Littoral%20Invertebrates%20Lakes/Methods%20Manual%20III%20Littoral%20Invertebrates%20Lakes.pdf</u>

NS SHARE Project. (2005d). North South Shared Aquatic Resource (NS Share): Methods Manual IV Profundal/Sub-littoral Macroinvertebrates - Lakes. Retrieved from <u>http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20</u> <u>Manuals%20T1/Methods%20Manual%20IV%20Profundal%20-</u> <u>sublittoral%20invertebrates%20Lakes/Methods_Manual_IV%20Profundal_sublittoral%20invertebrate</u> <u>s%20lakes.pdf</u>

NS SHARE Project. (2005e). North South Shared Aquatic Resource (NS Share): Methods Manual V Fish. Retrieved from

http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20 Manuals%20T1/Methods%20Manual%20V%20Fish/Methods%20Manual%20V%20Fish.pdf

- Orfanidis, S., Panayotidis, P., & Stamatis, N. (2001). Ecological evaluation of transitional and coastal waters: A marine benthic macrophytes-based model. *Mediterranean Marine Science*, 2(2), 20.
- Ozimek, T., & Kowalczewski, A. (1984). Long-term changes of the submerged macrophytes in eutrophic lake Mikolajskie (North Poland). [Article]. *Aquatic Botany*, *19*(1-2), 1-11.
- Parpală, L., G.-Tóth, L., Zinevici, V., Németh, P., & Szalontai, K. (2003). Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. *Hydrobiologia, 506-509*(1), 347-351.
EnvEurope

Life08 ENV/IT/000399

Petchey, O. L., O'Gorman, E., & Flynn, D. F. B. (2009). A functional guide to functional diversity measures. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau & C. Perrings (Eds.), *Biodiversity, Ecosystem Functioning, and Human Wellbeing - An Ecological and Economic Perspective* (pp. 384).

- Petriccione, B. (2005). Short-term changes in key plant communities of Central Apennines (Italy). *Acta botanica Gallica*, *152*(4), 545-561.
- Pollard, E. (1977). Method for assessing changes in abundance of butterflies. [Article]. *Biological Conservation*, *12*(2), 115-134.
- Pollard, E., & Yates, T. J. (1994). Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme: Springer.
- Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D. F. B., et al. (2012). Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades. *Science*, *336*(6081), 589-592.
- Robinson, C., & Williams, P. I. B. (2005). Respiration and its measurement in surface marine waters. In P. A. del Giorgio & P. I. B. Williams (Eds.), *Respiration in Aquatic Ecosystems* (pp. 147-180). Oxford (UK): Oxford University Press.
- Rossi, G., Parolo, G., & Ulian, T. (2009). Human trampling as a threat factor for the conservation of peripheral plant populations. [Article]. *Plant Biosystems*, *143*(1), 104-113.
- Rossi, G., Parolo, G., Zonta, L. A., Crawford, J. A., & Leonardi, A. (2006). Salix herbacea L. fragmented small population in the N-Apennines (Italy): response to human trampling disturbance. *Biodiversity and Conservation*, *15*(12), 3881-3893.
- Rothe, A., Huber, C., Kreutzer, K., & Weis, W. (2002). Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Hoglwald research in comparison with other European case studies. *Plant and Soil, 240*(1), 33-45.
- Sandin, L., Friberg, N., Furse, M., Clarke, R., & Larsen, S. (2004). Inter-calibration and harmonisation of "invertebrate methods", Standardisation of river classification: Framework method for calibrating different biological survey results against ecological classifications to be developed for the Water Framework Directivepp. 238). Available from http://www.eu-star.at/pdf/Deliverable8.pdf
- Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, P., et al. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. *Limnologica*, *34*(4), 283-301.
- Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S., & Schmedtje, U. (2004). Macrophytes and phytobenthos as indicators of ecological status in German lakes a contribution to the implementation of the Water Framework Directive. *Limnologica*, *34*(4), 302-314.
- Schoolmaster, D. R., Grace, J. B., & Schweiger, E. W. (2012). A general theory of multimetric indices and their properties. [Article]. *Methods in Ecology and Evolution*, *3*(4), 773-781.
- Slusarczyk, M. (2009). Extended lifespan traded for diapause in Daphnia. *Freshwater Biology, 54*(11), 2252-2262.
- Soil Staff Survey. (2010). Keys to Soil Taxonomy. In U. S. D. o. Agriculture & N. R. C. Service (Eds.) Available from http://soils.usda.gov/technical/classification/tax_keys/
- Sparks, T. H., Jaroszewicz, B., Krawczyk, M., & Tryjanowski, P. (2009). Advancing phenology in Europe's last lowland primeval forest: non-linear temperature response. *Climate Research, 39*(3), 221-226.
- Specziár, A., & Bíró, P. (1998). Spatial distribution and short-term changes of benthic macrofauna in Lake Balaton (Hungary). *Hydrobiologia*, *389*(1), 203-216.
- Stanisci, A., Carranza, M., Pelino, G., & Chiarucci, A. (2011). Assessing the diversity pattern of cryophilous plant species in high elevation habitats. *Plant Ecology*, *212*(4), 595-600.
- Stanisci, A., Pelino, G., & Blasi, C. (2005). Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). *Biodiversity and Conservation*, *14*(6), 1301-1318.
- Statistic Netherlands. (2006). TRIM (TRends and Indices for Monitoring data). from <u>http://www.cbs.nl/en-GB/menu/themas/natuur-milieu/methoden/trim/default.htm?Languageswitch=on</u>
- Steeman-Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer, 18, 23.
- Steinhardt, T., Karez, R., Selig, U., & Schubert, H. (2009). The German procedure for the assessment of ecological status in relation to the biological quality element "Macroalgae & Angiosperms" pursuant to the European Water Framework Directive (WFD) for inner coastal waters of the Baltic Sea. Rostocker Meeresbiologische Beitrage, 22, 7-42.

Life08 ENV/IT/000399

Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. *Canada Fisheries Research Board Bulletin*.

Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available from

http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland 2006_Ecological_Census_Techniques. pdf

- Sykes, J. M. (1996). BB Protocol Breeding birds. *To record the annual distribution and abundance of breeding birds within selected areas of ECN sites*, from <u>http://www.ecn.ac.uk/measurements/terrestrial/b/bi/bb</u>
- Tolonen, K. T., & Hamalainen, H. (2010). Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. *Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176*(1), 43-59.
- Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), *Biodegradation et Humification* (pp. 41 58). Sarreguemines: Pierrance Editeur.
- UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from <u>http://icp-forests.net/page/icp-forests-manual</u>
- United Kingdom Butterfly Monitoring Scheme. Methods for recording butterfly transects. from <u>http://www.ukbms.org/Methods.aspx#top</u>
- Vesala, T., Suni, T., Rannik, U., Keronen, P., Markkanen, T., Sevanto, S., et al. (2005). Effect of thinning on surface fluxes in a boreal forest. *Global Biogeochemical Cycles*, 19(2).
- Voříšek, P., Klvaňová, A., Wotton, S., & Gregory, R. D. (2008). A Best Practice Guide for wild bird monitoring schemes. In E. E. B. C. Council) (Eds.) Available from <u>http://www.ebcc.info/index.php?ID=365</u>
- Wellburn, A. R. (1994). The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotinoids, using various solvents with spectrophotometers of different resolution. *Journal of Plant Physiology*, 144(3), 307-313.
- Wetzel, R. G., & Likens, G. E. (1991). Limnological Analyses. New York: Springer.
- Wiederholm, T. (1980). Use of Benthos in Lake Monitoring. *Journal (Water Pollution Control Federation), 52*(3), 537-547.
- Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. *Environmental Management*, 2(4), 323-329.
- Winkler, W., Beyer, J., & Gnauck, A. (1980). Improvement of the accuracy of prediction of stochastic models of the oxygen concentration in flowing waters. [Article]. *Acta Hydrochimica Et Hydrobiologica, 8*(1), 107-110.
- WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html

Woiwod, I. P. (1996). The ECN butterflies protocol from <u>http://www.ecn.ac.uk/measurements/terrestrial/i/ib</u>

- World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf
- World Meterological Organization. (2008). Guide to Hydrological Practices (WMO-No. 168). In W. M. Organization (Eds.), Volume I Hydrology – From Measurement to Hydrological Information (Vol. Vol 1, Available from <u>http://www.hydrology.nl/images/docs/hwrp/WMO_Guide_168_Vol_I_en.pdf</u>
- World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from <u>http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html</u>, <u>http://www.wmo.int/pages/themes/wmoprod/guides.html</u>
- YSI Environmental. (2011). The Basics of Chlorophyll Measurement. from http://www.ysi.com/parametersdetail.php?Chlorophyll-6
- Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M., & Procaccini, G. (2006). Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity.
 [Article]. Marine Ecology-an Evolutionary Perspective, 27(4), 328-338.

10 Fact sheets for different environments

10.1 Terrestrial Systems

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.1 Flora Diversity ⇒ Vegetation: Species and functional diversity (incl. alien species, threatened species)

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Vascular plants: (1) Full species list (2) Coverage (%) or abundance

Important related indices

Shannon; Simpson; Eveness; species turn-over; rarefaction curves; phylogenetic diversity; Abundance-incidence-curves

Property: Frequency

Annual/periodic - able to be related to single year as basic unit

Property: Precision

Reference to Flora Europea taxonomy, Vienna-nomenclature code; Tokyo- Code;

Coverage estimation should be done for vegetation layers (tree, shrub, herb, floor) as objective as possible

Property: Time scale (incl. seasonality), temporal resolution

Depending on the dynamics of the community (often different seasonal aspects). More than once a year if necessary. All species occurring should be recorded.

Property: Basic spatial scale

Stratified sampling - independent plots representative for the site and/or the habitats within the sites; at least 4 replicates; minimum areal depending on biotoe type (100, 25 or 1m²),

Property: Base Units

Species number, percentage cover, frequency

Mandatory meta data

Survey date, location (XY coordinates), plot/area size, frequency of observations, biotope discription, method reference, design of sampling

Method applied (key phrases)

Large plots: vegetation relevés compatible to Braun-Blanquet, e.g. 5 x 5m in open habitat types, 10 x 10m in woody habitat types or transects (at least 20m long) with application of point intercept method; small plots (e.g. 1x1m): point frame method or simple frame method

Method references: specific to sites, not internationally applied

Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B., & Retana, J. (2008). Masting mediated by summer drought reduces acron predation in mediterranean oak forests. Ecology, 89(3), 805-817;

Petriccione, B. (2005). Short-term changes in key plant communities of Central Apennines (Italy). Acta botanica Gallica, 152(4), 545-561;

Rossi, G., Parolo, G., & Ulian, T. (2009). Human trampling as a threat factor for the conservation of peripheral plant populations. [Article]. Plant Biosystems, 143(1), 104-113;

Rossi, G., Parolo, G., Zonta, L. A., Crawford, J. A., & Leonardi, A. (2006). Salix herbacea L. fragmented small population in the N-Apennines (Italy): response to human trampling disturbance. Biodiversity and Conservation, 15(12), 3881-3893;

Sparks, T. H., Jaroszewicz, B., Krawczyk, M., & Tryjanowski, P. (2009). Advancing phenology in Europe's last lowland primeval forest: non-linear temperature response. Climate Research, 39(3), 221-226;

Stanisci, A., Carranza, M., Pelino, G., & Chiarucci, A. (2011). Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecology, 212(4), 595-600;

Stanisci, A., Pelino, G., & Blasi, C. (2005). Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodiversity and Conservation, 14(6), 1301-1318

Method references: established, internationally applied

Braun-Blanquet, J. (1932). Plant sociology - the study of plant communities (1st ed.): McGraw-Hill book company, inc.;

The GLORIA* Field Manual – Multi-Summit Approach (*Global Observation Research Initiative in Alpine
Environments). (2011). In H. Pauli, M. Gottfried, D. Hohenwallner, K. Reiter, R. Casale & G. Grabherr
(Eds.)pp. 89). Available from
http://www.gloria.ac.at/downloads/GLORIA_MS4_Web_english_withNOTES201106.pdf;

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

Morris, W. F., & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis;

Petchey, O. L., O'Gorman, E., & Flynn, D. F. B. (2009). A functional guide to functional diversity measures. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau & C. Perrings (Eds.), Biodiversity, Ecosystem Functioning, and Human Wellbeing - An Ecological and Economic Perspective (pp. 384);

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environmental Management, 2(4), 323-329.

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.2 Flora Diversity ⇒ Vegetation: Species and functional diversity (incl. alien species, threatened species)

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Mosses: (1) Full species list (2) Coverage (%) or abundance

Important related indices

Shannon; Simpson; Eveness; species turn-over; rarefaction curves; phylogenetic diversity

Property: Frequency

Annual/periodic - able to be related to single year as basic unit

Property: Precision

Reference to Flora Europea taxonomy, Vienna-nomenclature code;

Coverage estimation should be done for vegetation layers (tree, shrub, herb, floor) and as objective as possible

Property: Time scale (incl. seasonality), temporal resolution

Depending on the community. More than once a year if necessary but generally all species occurring per year should be recorded.

Property: Basic spatial scale

Stratified random sampling - independent plots representative for the site and/or the habitats within the sites; at least 10 replicates; minimum standard sample unit 1x1m

Property: Base Units

Species number, percentage cover, frequency (no. of individuals)

Mandatory meta data

Survey date, location (XY coordinates), plot/area size, frequency of observations, biotope discription, method reference, design of sampling

Method applied (key phrases)

Large plots: vegetation relevés compatible to Braun-Blanquet, e.g. $5 \times 5m$ in open habitat types, $10 \times 10m$ in woody habitat types or transects (at least 20m long) with application of point intercept method; small plots (e.g. $1\times 1m$): point frame method or simple frame method

Method references: specific to sites, not internationally applied

Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B., & Retana, J. (2008). Masting mediated by summer drought reduces acron predation in mediterranean oak forests. Ecology, 89(3), 805-817;

Petriccione, B. (2005). Short-term changes in key plant communities of Central Apennines (Italy). Acta botanica Gallica, 152(4), 545-561;

Rossi, G., Parolo, G., & Ulian, T. (2009). Human trampling as a threat factor for the conservation of peripheral plant populations. [Article]. Plant Biosystems, 143(1), 104-113;

Rossi, G., Parolo, G., Zonta, L. A., Crawford, J. A., & Leonardi, A. (2006). Salix herbacea L. fragmented small population in the N-Apennines (Italy): response to human trampling disturbance. Biodiversity and Conservation, 15(12), 3881-3893;

Sparks, T. H., Jaroszewicz, B., Krawczyk, M., & Tryjanowski, P. (2009). Advancing phenology in Europe's last lowland primeval forest: non-linear temperature response. Climate Research, 39(3), 221-226;

Stanisci, A., Carranza, M., Pelino, G., & Chiarucci, A. (2011). Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecology, 212(4), 595-600;

Stanisci, A., Pelino, G., & Blasi, C. (2005). Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodiversity and Conservation, 14(6), 1301-1318

Method references: established, internationally applied

Braun-Blanquet, J. (1932). Plant sociology - the study of plant communities (1st ed.): McGraw-Hill book company, inc.;

The GLORIA* Field Manual – Multi-Summit Approach (*Global Observation Research Initiative in Alpine
Environments). (2011). In H. Pauli, M. Gottfried, D. Hohenwallner, K. Reiter, R. Casale & G. Grabherr
(Eds.)pp. 89). Available from
http://www.gloria.ac.at/downloads/GLORIA_MS4_Web_english_withNOTES201106.pdf;

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

Morris, W. F., & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis;

Petchey, O. L., O'Gorman, E., & Flynn, D. F. B. (2009). A functional guide to functional diversity measures. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau & C. Perrings (Eds.), Biodiversity, Ecosystem Functioning, and Human Wellbeing - An Ecological and Economic Perspective (pp. 384);

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environmental Management, 2(4), 323-329.

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.3 Flora Diversity ⇒ Vegetation: Species and functional diversity (incl. alien species, threatened species)

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Lichens: (1) Full species list (2) Coverage (%) or abundance

Important related indices

Shannon; Simpson; Eveness; species turn-over; rarefaction curves; phylogenetic diversity

Property: Frequency

Annual/periodic - able to be related to single year as basic unit

Property: Precision

Reference to Flora Europea taxonomy, Vienna-nomenclature code;

Coverage estimation should be done for vegetation layers (tree, shrub, herb, floor) and as objective as possible

Property: Time scale (incl. seasonality), temporal resolution

Depending on the community. More than once a year if necessary but generally all species occurring per year should be recorded.

Property: Basic spatial scale

Stratified random sampling - independent plots representative for the site and/or the habitats within the sites; at least 10 replicates; minimum standard sample unit 1x1m

Property: Base Units

Species number, percentage cover, frequency (no. of individuals)

Mandatory meta data

Survey date, location (XY coordinates), plot/area size, frequency of observations, biotope discription, method reference, design of sampling

Method applied (key phrases)

Large plots: vegetation relevés compatible to Braun-Blanquet, e.g. $5 \times 5m$ in open habitat types, $10 \times 10m$ in woody habitat types or transects (at least 20m long) with application of point intercept method; small plots (e.g. $1\times 1m$): point frame method or simple frame method

Method references: specific to sites, not internationally applied

Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B., & Retana, J. (2008). Masting mediated by summer drought reduces acron predation in mediterranean oak forests. Ecology, 89(3), 805-817;

Petriccione, B. (2005). Short-term changes in key plant communities of Central Apennines (Italy). Acta botanica Gallica, 152(4), 545-561;

Rossi, G., Parolo, G., & Ulian, T. (2009). Human trampling as a threat factor for the conservation of peripheral plant populations. [Article]. Plant Biosystems, 143(1), 104-113;

Rossi, G., Parolo, G., Zonta, L. A., Crawford, J. A., & Leonardi, A. (2006). Salix herbacea L. fragmented small population in the N-Apennines (Italy): response to human trampling disturbance. Biodiversity and Conservation, 15(12), 3881-3893;

Sparks, T. H., Jaroszewicz, B., Krawczyk, M., & Tryjanowski, P. (2009). Advancing phenology in Europe's last lowland primeval forest: non-linear temperature response. Climate Research, 39(3), 221-226;

Stanisci, A., Carranza, M., Pelino, G., & Chiarucci, A. (2011). Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecology, 212(4), 595-600;

Stanisci, A., Pelino, G., & Blasi, C. (2005). Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodiversity and Conservation, 14(6), 1301-1318

Method references: established, internationally applied

Braun-Blanquet, J. (1932). Plant sociology - the study of plant communities (1st ed.): McGraw-Hill book company, inc.;

The GLORIA* Field Manual – Multi-Summit Approach (*Global Observation Research Initiative in Alpine
Environments). (2011). In H. Pauli, M. Gottfried, D. Hohenwallner, K. Reiter, R. Casale & G. Grabherr
(Eds.)pp. 89). Available from
http://www.gloria.ac.at/downloads/GLORIA_MS4_Web_english_withNOTES201106.pdf;

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

Morris, W. F., & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis;

Petchey, O. L., O'Gorman, E., & Flynn, D. F. B. (2009). A functional guide to functional diversity measures. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau & C. Perrings (Eds.), Biodiversity, Ecosystem Functioning, and Human Wellbeing - An Ecological and Economic Perspective (pp. 384);

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environmental Management, 2(4), 323-329.

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.4 Flora Diversity \Rightarrow Population trends of vascular plants

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Plants: Changes in population size over time (feasible only für single target species!) this parameter is partly covered by the abundance of vasculare plants!!

Important related indices

Population growth rate; probability of extinction or decline if at least 10 counts are available

Property: Frequency

Once a year if possible. Longer time lags are also possible (be aware of normal variation in population sizes!)

Property: Precision

Count of all individuals (or another easy unit such as ramets, genets...) in the population, or within (3-) 5 permanent plots

Property: Time scale (incl. seasonality), temporal resolution

Spring to summer, in order to be able to combine with sampling of reproductive indexes and recruitment success

Property: Basic spatial scale

Permanent plots (size variable depending on plant size, at least 100-300 units should be included) or whole populations if they are small (<100-300 plants)

Property: Base Units

Frequency of individuals (number of ramets, shoots, genets, or visual units)

Mandatory meta data

Survey date, GPS location, area size, biotope description, method of counting, estimation of population size and population growth rate

Method applied (key phrases)

Counting individuals (or different units used to estimate frequency of plants) in permanent areas;

depending on distribution and size, small populations (approx. less than 300 plants, easily covered by eye) should be counted as a whole; for larger or fragmented populations (not to be assessed by eye) a minimum of (3-) 5 permanent plots should be set. Plants should be counted in the same way every sampling year

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Morris, W. F., & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis.

Lawson, D. M., Lamar, C. K., & Schwartz, M. W. (2008). Quantifying plant population persistence in human-dominated landscapes. Conservation Biology, 22(4), 922-928.

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.5 Flora Diversity ⇒ Forest: Stand characteristics, stand diversity

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Forest: (1) Age, (2) Age classes, (3) Height, (4) Distribution

Important related indices

Property: Frequency

once, 5-10 years, on occasion

Property: Precision

Site characteristics

Property: Time scale (incl. seasonality), temporal resolution

summer measurements

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Survey

Method references: specific to sites, not internationally applied

Ilvesniemi, H., Levula, J., Ojansuu, R., Kolari, P., Kulmala, L., Pumpanen, J., et al. (2009). Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Environment Research, 14(4), 731-753

Method references: established, internationally applied

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.6 Fauna Diversity ⇒ Species richness: Birds (incl. alien species, threatened species)

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Breeding or nesting Birds (only!): (1) Full species list (2) Abundance (Common Birds)

Important related indices

Shannon;

Simpson; Abundance-incidence-curves

Property: Frequency

Yearly up to every 3 years, 3-4 surveys per year during the breeding season starting at sunrise;

point transect: 5-10 minutes count per point

Property: Precision

1. To characterise habitat-specific communities (representative sample areas)

2.

Reference to accepted taxonomy (e.g. http://www.birdlife.org/datazone/info/taxonomy;

http://www.faunaeur.org/)

Property: Time scale (incl. seasonality), temporal resolution

March-September

Property: Basic spatial scale

Line transects: 1-2 km, if several lines, then at least 200m apart; avoid crossing markedly different habitats;

Point transects: distance between points at least 200m, about 20 points per site

Property: Base Units

Numbers of individuals; behaviour categories

Mandatory meta data

Survey date and time, location, area size, distance bands, frequency of observations, behaviour categories, biotope discription, method reference, design of sampling, biotope inventory of the sampled area

Method applied (key phrases)

Line transects, point transects, point counts, point-stop, fixed distance bands, regular or systematic approach, random approach

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

British Trust for Ornithology. Volunteer surveys - Download forms & instructions. from http://www.bto.org/volunteer-surveys/bbs/taking-part/download-forms-instructions;

Sutherland, W. J. (2006). Ecological Census Techniques. In W. J. Sutherland (Eds.), A Handbookpp. 432). Available from

http://www.ecolab.bas.bg/main/Members/snikolov/Sutherland_2006_Ecological_Census_Techniques.pdf;

Sykes, J. M. (1996). BB Protocol - Breeding birds. To record the annual distribution and abundance ofbreedingbirdswithinselectedareasofECNsites,fromhttp://www.ecn.ac.uk/measurements/terrestrial/b/bi/bb;

Voříšek, P., Klvaňová, A., Wotton, S., & Gregory, R. D. (2008). A Best Practice Guide for wild bird monitoring schemes. In E. E. B. C. Council) (Eds.) Available from http://www.ebcc.info/index.php?ID=365;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.7 Fauna Diversity ⇒ Species richness: Butterflies (incl. alien species, threatened species, sedentary and migratory species)

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Butterflies: (1) Full species list (2) Abundance (grassland habitats)

Important related indices

Shannon;

Simpson; abundance-incidence curves

Property: Frequency

Yearly, at least 5 (detection of about 80% of species), better 7-10 surveys

Property: Precision

1. To characterise the annual community of related habitats

2. Reference to accepted taxonomy (e.g. http://www.bc-europe.eu/category.asp?catid=9;

http://www.faunaeur.org/)

Property: Time scale (incl. seasonality), temporal resolution

March-September

Property: Basic spatial scale

50m (line transects)

at least 300 m (line transects) in a single defined habitat type

Property: Base Units

Number of individuals (adults, larvae?)

Mandatory meta data

Survey date and time, number of surveys, location (site name, coordinates, altitude), transect length, frequency of observations, biotope description, method reference, design of sampling, biotope inventory of the sampled area

Method applied (key phrases)

Line transect, counts of individuals

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Pollard, E. (1977). Method for assessing changes in abundance of butterflies. [Article]. Biological Conservation, 12(2), 115-134;

Pollard, E., & Yates, T. J. (1994). Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme: Springer;

United Kingdom Butterfly Monitoring Scheme. Methods for recording butterfly transects. from http://www.ukbms.org/Methods.aspx#top;

Woiwod, I. P. (1996). The ECN butterflies protocol from http://www.ecn.ac.uk/measurements/terrestrial/i/ib

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.8 Within Habitat Structure ⇒ Vegetation structure

Definition of Within Habitat Structure: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Plants: (1) Vertical and horizontal vegetation structure within habitats, (2) number, type and coverage of layers (including mulch or litter?)

Important related indices

Age structure; fractal dimension; LSM (landscape metrics)

Property: Frequency

Periodic (once a year or once every 3-5 years; annual communities 1-3 times a year)

Property: Precision

Reference habitate typology: EUNIS and CORINE(?)

Property: Time scale (incl. seasonality), temporal resolution

Depends on the community

Property: Basic spatial scale

startified sampling - independent plots, leaf area sensors

Property: Base Units

Year, fractal dimension

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Remote sensing, aerial photographs (forest), verified through field work, vegetation relevés compatible to Braun-Blanquet

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó

Method references: established, internationally applied

European Environment Agency. Habitat types search. from http://eunis.eea.europa.eu/habitats.jsp

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.9 Within Habitat Structure ⇒ Vegetation composition

Definition of Within Habitat Structure: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Plants: Life forms (species traits: grasses, herbs, insect pollination, legumes, tap roots, flowering period, life periode (annuals), migration ability,..)

Important related indices

Age structure; fractal dimension; LSM (landscape metrics)

Property: Frequency

According to vegetation relevés (based on species lists from field work with species trait data bases)

Property: Precision

Reference habitate typology: EUNIS or CORINE??

Property: Time scale (incl. seasonality), temporal resolution

according to vegetation relevés

Property: Basic spatial scale

Vector data, habitat map (representative for the site)

Property: Base Units

accordng to vegetation relevés, abundance-incidence curves

Mandatory meta data

according to vegetation relevés, trait bases used

Method applied (key phrases)

according to vegetation relevés

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó

Method references: established, internationally applied

European Environment Agency. Habitat types search. from http://eunis.eea.europa.eu/habitats.jsp

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.10 Within Habitat Structure ⇒ Deadwood

Definition of Within Habitat Structure: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Forest: Deadwood (1) volume (CWD), (2) position, (3) decaying rate
Important related indices
Property: Frequency
10 yearly
Property: Precision
1 m3
Property: Time scale (incl. seasonality), temporal resolution
Trees without leaves , no smow
Property: Basic spatial scale
Property: Base Units
m3/ha (volume of deadwood), 9 classes (position), 5 classes (decaying rate)
Mandatory meta data

Method applied (key phrases)

Transects

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., et al. (1986). Ecology of coarse woody debris in temperate ecosystems. [Review]. Advances in Ecological Research, 15, 133-302

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.11 Soil ⇒ Soil physical characteristics: soil horizons, soil water retention curves, total porosity, particle size distribution, stone content

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: SOIL: Classification according to FAO World reference base for soil resources (WRB 2006)

Important related indices

Diagnostic horizons; geomorphic conditions

Property: Frequency

At beginning of survey, then periodically (every 10 years)

Property: Precision

To characterise the site, reference list, description of soil layers including depth (cm)

Property: Time scale (incl. seasonality), temporal resolution

Once (every 10 years)

Property: Basic spatial scale

Site

5 replicates per site type (soil depth to be included)

Property: Base Units

Horizon, pedon, soil order (classification)

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling, classification used

Method applied (key phrases)

Soil survey (FAO)

Method references: specific to sites, not internationally applied

AG Boden, Bodenkundliche Kartieranleitung, 4. Auflage (KA4), Hannover, 1994, 392.

Method references: established, internationally applied

Field book for describing and sampling soils, Version 2.0. (2002). In P. J. Schoeneberger, D. A. Wysocki, E.C.Benham& W.D.Broderson(Eds.)Availablefromftp://ftp-fc.sc.egov.usda.gov/NSSC/Field_Book/FieldBookVer2.pdf;

International Union of Soil Sciences Working Group WRB. (2006). World reference base for soil resources 2006, A framework for international classification, correlation and communication Available from ftp://ftp.fao.org/agl/agll/docs/wsrr103e.pdf;

Soil Staff Survey. (2010). Keys to Soil Taxonomy. In U. S. D. o. Agriculture & N. R. C. Service (Eds.) Available from http://soils.usda.gov/technical/classification/tax_keys/

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.12 Soil ⇒ Soil bulk density

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Bulk density

Important related indices

Property: Frequency

At beginning of survey, then periodically (every 3 - 5 years)

Property: Precision

To characterise the site and essential for soil Carbon stocks!!!

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) in case of no management

Property: Basic spatial scale

At least 3 replicates per horizon at every chosen plot

Property: Base Units

Density of natural undisturbed soil

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Stainless steel cylinder of known volume (normally 100 cm3)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. (1986)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.13 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Inorganic C and N content

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements, pH, exchangeable cations

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.14 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Base saturation

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements, pH, exchangeable cations

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.15 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Cation exchange capacity

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements, pH, exchangeable cations

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.16 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: pH value

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements, pH, exchangeable cations

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.17 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Disssolved organic (1) Carbon (DOC) and (2) Nitrogen (DON) concentration

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.18 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Soil solution chemistry

Important related indices

Organic and inorganic C and N; total N; pH; exchangeable cations; base saturation

Property: Frequency

Continuous/periodical, every year or seasonal

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Once (per year?) monthly

Property: Basic spatial scale

at least 3 replicates per horizon at every chosen plot

Property: Base Units

Content of elements

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Methods of Soil Analysis. Part 3. Chemical Methods. (1996)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.19 Soil ⇒ Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: Temperature

Important related indices

Property: Frequency

Continuous in hourly resolution, at least at least 3 different soil depths

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Continous, hourly

Property: Basic spatial scale

Point to field scale

Property: Base Units

°C

Mandatory meta data

Location, area, soil map

Method applied (key phrases)

Temperature Sensors, PT100

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.20 Soil \Rightarrow Soil chemistry (related to profile)

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil: moisture (profiles)

Important related indices

N; C; P

Property: Frequency

Continuous/periodical, every 2-3 months

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous/periodical

Property: Basic spatial scale

Plot: at least 3 replicates per soil depth, at least 3 sopil depths)

Property: Base Units

Water content, water potential, concentration of ions

Mandatory meta data

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Device (sensors ,e.g. TDR; tensiometer)

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó

Method references: established, internationally applied

Hillel, D. (1980). Fundamentals of soil physics: Academic Press Inc.;

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.21 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: Air temperature
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.22 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: Wind speed
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.23 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: Vapor pressure deficit (VPD)
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.24 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: CO2
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.25 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: O3
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.26 Atmosphere ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Atmosphere: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Atmosphere: 1) SO4, (2) NOx concentrations
Important related indices
Fluxes of chemicals in the atmosphere
Property: Frequency
Continuous/subdaily (half-hourly)
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Continuous/daily
Property: Basic spatial scale
Site
Property: Base Units
Conce+P5ntration per time unit (mg/m); W/m ²

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.27 Habitat ⇒ Cover of CORINE land use (better: EUNIS habitats); EU Habitat Directive (connection to remote sensing)

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Habitat: (1) Land cover, (2) related metrics (e.g. connectivity, fragmentation, diversity)

Important related indices

Landscape metrics (e.g. SHDI; MPS; PROX; ENN)

Property: Frequency

Periodic (depends on community dynamics)

Property: Precision

To characterise the site (spatial resolution)

Property: Time scale (incl. seasonality), temporal resolution

Every 3 years (depends on dynamics of land use changes and community changes)

Property: Basic spatial scale

Site/landscape

Property: Base Units

Landscape

Mandatory meta data

Life08 ENV/IT/000399

Survey date, location, area size, year of observation, methods of sampling

Method applied (key phrases)

Maps (surveys/checked)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.28 E_input ⇒ Energy input: Radiation

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Photoshynthetic active radiation (PAR)

Important related indices

Property: Frequency

Continuous (half hourly) / site characterisation

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous / annual

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Device / calculation;

Pyranometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.29 E_input ⇒ **Energy input: Radiation**

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Direct and diffuse sky radiation

Important related indices

Property: Frequency

Continuous (half hourly) / site characterisation

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous / annual

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Device / calculation;

Pyranometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf;

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.30 E_input ⇒ Photosynthetic energy fluxes: a) energy input (light absorption); b) energy partitioning (photochemical vs non-photochemical)

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Light absorption (greeness indexes, e.g. NDVI)

Important related indices

NDVI; PRI; NPQ; Photochemical Yield; Non-Photochemical Yield; Light Use Efficiency

Property: Frequency

Measurements are continuous (30 min averages). But Active Fluorescence has a minimum practical Frequency of 5-15 minutes.

Property: Precision

Sensor field-of-view needs to be representative of the unit under study. Few meters for canopy level, or few mm for leaf level.

Property: Time scale (incl. seasonality), temporal resolution

Annual coverage. Snow problems.

Property: Basic spatial scale

From a few mm (leaf level measurements) to tenths of meters (tower level measurements)

Property: Base Units

mmol Quanta m-2 s-1

PAR, Temperature, precise sensor orientation (canopy level), Stand structure (BRDF computing): tree density, size, LAI,...

Method applied (key phrases)

Photodiode sensor

Radiometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.31 E_input ⇒ Photosynthetic energy fluxes: a) energy input (light absorption); b) energy partitioning (photochemical vs non-photochemical)

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Energy partitioning (PRI Photochemical Reflectance Index)

Important related indices

NDVI; PRI; NPQ; Photochemical Yield; Non-Photochemical Yield; Light Use Efficiency

Property: Frequency

Measurements are continuous (30 min averages). But Active Fluorescence has a minimum practical Frequency of 5-15 minutes.

Property: Precision

Sensor field-of-view needs to be representative of the unit under study. Few meters for canopy level, or few mm for leaf level.

Property: Time scale (incl. seasonality), temporal resolution

Annual coverage. Snow problems.

Property: Basic spatial scale

From a few mm (leaf level measurements) to tenths of meters (tower level measurements)

Property: Base Units

mmol Quanta m-2 s-1

PAR, Temperature, precise sensor orientation (canopy level), Stand structure (BRDF computing): tree density, size, LAI,...

Method applied (key phrases)

Photodiode sensor

Radiometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.32 E_input ⇒ Photosynthetic energy fluxes: a) energy input (light absorption); b) energy partitioning (photochemical vs non-photochemical)

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Active and passive fluorescence

Important related indices

NDVI; PRI; NPQ; Photochemical Yield; Non-Photochemical Yield; Light Use Efficiency

Property: Frequency

Measurements are continuous (30 min averages). But Active Fluorescence has a minimum practical Frequency of 5-15 minutes.

Property: Precision

Sensor field-of-view needs to be representative of the unit under study. Few meters for canopy level, or few mm for leaf level.

Property: Time scale (incl. seasonality), temporal resolution

Annual coverage. Snow problems.

Property: Basic spatial scale

From a few mm (leaf level measurements) to tenths of meters (tower level measurements)

Property: Base Units

mmol Quanta m-2 s-1

PAR, Temperature, precise sensor orientation (canopy level), Stand structure (BRDF computing): tree density, size, LAI,...

Method applied (key phrases)

Photodiode sensor

Radiometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.33 E_storage ⇒ **Biomass**

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Incremental biomass: Above-ground Net Primary Production (ANPP) as a proxy

Important related indices

Volume/mass of ecosystem components; Light-use efficiency

Property: Frequency

Annual

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Annual (more sampling may be needed)

Property: Basic spatial scale

Site

Property: Base Units

Cubic meters, metric tons

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Sampling

Method references: specific to sites, not internationally applied

Method references: established, internationally applied
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.34 E_output ⇒ **Reflectivity**

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Albedo (diffuse reflectivity of a surface)

Important related indices

Eddy covariance

Light-use efficiency

Property: Frequency

Albedo: continuous, 10-30 min

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous

Property: Basic spatial scale

Site

Property: Base Units

Weight/volume units per time units

 μ mol m-2 s-1

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Measured on selected meteorological stations

4-component net radiation sensors

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.35 E_output ⇒ Heat flux

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Heat flux

Important related indices

Eddy covariance; Light-use efficiency

Property: Frequency

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous

Property: Basic spatial scale

Site

Property: Base Units

Weight/volume units per time units

 μ mol m-2 s-1

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Measured on selected meteorological stations

4-component net radiation sensors

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.36 E_output ⇒ **Respiration**

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Respiration (production of carbon dioxide by living organisms)

Important related indices

Eddy covariance; Light-use efficiency

Property: Frequency

Respiration: 3x per year

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous

Property: Basic spatial scale

Site

Property: Base Units

Weight/volume units per time units

 μ mol m-2 s-1

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Measured on selected meteorological stations

4-component net radiation sensors

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10(3), 215-221;

ICOS. Integrated Carbon Observation System. from http://www.icos-infrastructure.eu/;

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.37 E_efficiency measures ⇒ **Energy efficiency**

Definition of *E_efficiency measures*: The amount of energy necessary to maintain a specific biomass, also serving as a stress indicator for the system.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER: Respiration per biomass Important related indices** Eddy covariance **Property: Frequency** Continuous, temporal resolution 30 min **Property: Precision** To characterise the site Property: Time scale (incl. seasonality), temporal resolution Continuous **Property: Basic spatial scale** Plot/site **Property: Base Units** umol m-2 s-1 Mandatory meta data Location, plot/Area size, frequency of observations, biotope discription, method reference Measuring height, fetch, type of gas analyser (closed, open, enclosed),

Sampling/biometry/proxy variables

Method references: specific to sites, not internationally applied

Vesala, T., Suni, T., Rannik, U., Keronen, P., Markkanen, T., Sevanto, S., et al. (2005). Effect of thinning on surface fluxes in a boreal forest. [Article]. Global Biogeochemical Cycles, 19(2)

Method references: established, internationally applied

Kumar, M., & Monteith, J. L. (1982). Remote sensing of crop growth. In H. Smith (Ed.), Plants and the daylight spectrum (pp. 133-144). London: Academic Press

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.38 M_input ⇒ **Deposition of main nutrients**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Deposition base cations (K, Na, Ca, Mg)

Important related indices

Concentration; ion ratio

Property: Frequency

Monthly to Annual; (Ignatova) => deposition measurements every 15 days; Weathering- once

Property: Precision

To characterise the site, influx determination

Property: Time scale (incl. seasonality), temporal resolution

Periodical (monthly)

Property: Basic spatial scale

Site

Property: Base Units

kg/ha,

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Collectors; sampling

Method references: specific to sites, not internationally applied

Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64(2), 158-166

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.39 M_input ⇒ **Deposition of main nutrients**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Deposition SO42-

Important related indices

Concentration; ion ratio

Property: Frequency

Monthly to Annual; (Ignatova) => deposition measurements every 15 days; Weathering- once

Property: Precision

To characterise the site, influx determination

Property: Time scale (incl. seasonality), temporal resolution

Periodical (monthly)

Property: Basic spatial scale

Site

Property: Base Units

kg/ha,

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Collectors; sampling

Method references: specific to sites, not internationally applied

Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64(2), 158-166

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.40 M_input ⇒ **Deposition of main nutrients**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Deposition Cl-

Important related indices

Concentration; ion ratio

Property: Frequency

Monthly to Annual; (Ignatova) => deposition measurements every 15 days; Weathering- once

Property: Precision

To characterise the site, influx determination

Property: Time scale (incl. seasonality), temporal resolution

Periodical (monthly)

Property: Basic spatial scale

Site

Property: Base Units

kg/ha,

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Collectors; sampling

Method references: specific to sites, not internationally applied

Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64(2), 158-166

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.41 M_input ⇒ **Deposition of main nutrients**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Wet and dry deposition of atmospheric N (NH4+, NO3-)

Important related indices

N-excess

Property: Frequency

Continuous (monthly, weekly, seasonal),

Property: Precision

Characterisation of site

Property: Time scale (incl. seasonality), temporal resolution

Continuous

Property: Basic spatial scale

Site

Property: Base Units

kg N ha -1 yr-1

Mandatory meta data

Measuring height, fetch, type of measurement (e.g. Eddy covariance, eddy accumulation, relaxed eddy accumulation), O3 concentration

traps/collectors

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.42 M_storage ⇒ **Biomass**

Definition of *M_storage*: *The capacity of an ecosystem to store matter when available and to release*

it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Vegetation biomass: (a) aboveground, (b) belowground

Important related indices

Concentration; ion ratio; NDVI; REIP; LAI

Property: Frequency

Annual/periodic, depends on the objective: yield level, proxy for transpiration, proxy for site fertility, nutrient storages, nutrient export, carbon storage,..; relevant for many different issues beyond carbon cycle

Property: Precision

To characterise the site, the community, the ressource availability, mass determinations...

Property: Time scale (incl. seasonality), temporal resolution

Depends on site type, habitat type and objective

Property: Basic spatial scale

Plot or site or habitat (remote sensing)

Property: Base Units

kg/ha; LAI: m2/m2; spectral indices (NDVI,REIP)

Mandatory meta data

Date, location, plot or area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Estimation, surveys, biometry, proxies (e.g. plant height in grasslands), remote sensing

Method references: specific to sites, not internationally applied

Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., Caldwell, B. A., et al. (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. Forest Ecology and Management, 214(1-3), 320-330

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.43 M_storage ⇒ S, N content of biomass

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed

it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: S, N content of biomass

Important related indices

Concentration; ion ratio

Property: Frequency

Annual/periodic

Property: Precision

To characterise the site, mass determinations

Property: Time scale (incl. seasonality), temporal resolution

Depend on site type

Property: Basic spatial scale

Plot/site

Property: Base Units

kg/ha, LAI: (m2/m2)

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Estimation, surveys, biometry, proxies (e.g. plant height in grasslands)

Method references: specific to sites, not internationally applied

Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., Caldwell, B. A., et al. (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. Forest Ecology and Management, 214(1-3), 320-330

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.44 M_storage ⇒ Matter storage

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nitrogen fixation

Important related indices

Concentration; ion ratio

Property: Frequency

Annual/periodic

Property: Precision

To characterise the site, mass determinations

Property: Time scale (incl. seasonality), temporal resolution

Depend on site type

Property: Basic spatial scale

Plot/site

Property: Base Units

kg/ha, LAI: (m2/m2)

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Estimation, surveys, biometry, proxies (e.g. plant height in grasslands)

Method references: specific to sites, not internationally applied

Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., Caldwell, B. A., et al. (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. Forest Ecology and Management, 214(1-3), 320-330

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.45 M_storage ⇒ **Nitrogen** fixation

Definition of *M_storage*: *The capacity of an ecosystem to store matter when available and to release*

it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Leaf Area Index (LAI; proxy for photosynthetic primary production and evapotranspiration; estimation by remote sensing)

Important related indices

Property: Frequency

Annual/bi-annual

Property: Precision

biomass as an integrative measure + competitive outcome (species success)

Property: Time scale (incl. seasonality), temporal resolution

Once a year

Property: Basic spatial scale

Plot (1x1m)

Property: Base Units

g/species and area unit

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.46 M_output ⇒ Significant matter export: (1) harvesting, grazing; (2) leaching; (3) gas emissions (NH3, denitrification products)

Definition of M_output: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Utilized matter yield (harvesting, grazing)

Important related indices

Exploitation; water/wind transport of materials

Property: Frequency

Annual/seasonal, monthly calc. from daily flow

Property: Precision

To characterise the site (when relevant)

Property: Time scale (incl. seasonality), temporal resolution

To characterise the site (when relevant)

Property: Basic spatial scale

Site

Property: Base Units

Metric tons per area unit

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Estimation, surveys

Method references: specific to sites, not internationally applied

Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), Biodegradation et Humification (pp. 41 - 58). Sarreguemines: Pierrance Editeur

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.47 M_output ⇒ Green House Gas (GHG) exchange

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Respiration: CO2 fluxes

Important related indices

Property: Frequency

constant, conitinuous, hourly

Property: Precision

To characterise the site, nutrient losses

Property: Time scale (incl. seasonality), temporal resolution

Constant

Property: Basic spatial scale

Plot, Site, spatial heterogeinity

Property: Base Units

kg C ha-2 yr-1

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

static or dynamic chamber design

Method references: specific to sites, not internationally applied

Butterbach-Bahl, K., Gasche, R., Breuer, L., & Papen, H. (1997). Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions. Nutrient Cycling in Agroecosystems, 48(1), 79-90

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.48 M_output ⇒ Nitrate leaching

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: NO3- leaching

Important related indices

Property: Frequency

continuous, at least at 3-5 different locations

Property: Precision

To characterise the site, nutrient losses

Property: Time scale (incl. seasonality), temporal resolution

Constant

Property: Basic spatial scale

Plot, Site, spatial heterogeinity

Property: Base Units

kg N ha-1 yr-1; mg N L-1

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Suction cups (tension ceramic lysimeters

Method references: specific to sites, not internationally applied

Rothe, A., Huber, C., Kreutzer, K., & Weis, W. (2002). Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Hoglwald research in comparison with other European case studies. Plant and Soil, 240(1), 33-45

Method references: established, internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.49 M_efficiency measures ⇒ **Nutrient cycling**

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Litter residence time
Important related indices
Property: Frequency
Annual/periodic
Property: Precision
To characterise the site, mass losses
Property: Time scale (incl. seasonality), temporal resolution
Annual/periodic
Property: Basic spatial scale
Plot/site
Property: Base Units
Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Litterfall/standing litter; litterbags,

Method references: specific to sites, not internationally applied

Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), Biodegradation et Humification (pp. 41 - 58). Sarreguemines: Pierrance Editeur

Method references: established, internationally applied

EnvEurope TERRESTRIAL SYSTEMS

MAPPING OF PARAMETERS TO THE CONCEPT OF ECOLOGICAL INTEGRITY (EI; see Table 1, p. 7)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.50 M_efficiency measures ⇒ **Nutrient cycling**

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Litter decomposition
Important related indices
Property: Frequency
Annual/periodic
Property: Precision
To characterise the site, mass losses
Property: Time scale (incl. seasonality), temporal resolution
Annual/periodic
Property: Basic spatial scale
Plot/site
Property: Base Units
Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Litterfall/standing litter; litterbags,

Method references: specific to sites, not internationally applied

Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), Biodegradation et Humification (pp. 41 - 58). Sarreguemines: Pierrance Editeur

Method references: established, internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.51 M_efficiency measures ⇒ Nutrient cycling

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Litter C/N ratio

Important related indices

Property: Frequency

Annual/periodic

Property: Precision

To characterise the site, mass losses

Property: Time scale (incl. seasonality), temporal resolution

Annual/periodic

Property: Basic spatial scale

Plot/site

Property: Base Units

Mandatory meta data

Date, location, plot/area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Litterfall/standing litter; litterbags,

Method references: specific to sites, not internationally applied

Toth, J. A., Papp, L. B., & Lenkey, B. (1975). Litter decomposition in an oak forest ecosystem (Quercetum petreae Cerris) in northern Hungary studied in the framework of "Sikfökut Project". In G. Kilbertus, O. Reisinger, A. Mourey & J. A. Cancela da Fonseca (Eds.), Biodegradation et Humification (pp. 41 - 58). Sarreguemines: Pierrance Editeur

Method references: established, internationally applied
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.52 W_input ⇒ Precipitation, throughfall, runoff

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Precipitation

Important related indices

Property: Frequency

Continuous (10 min)

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Continuous

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Location, plot/Area size, frequency of observations, biotope discription, method reference

Method applied (key phrases)

Tipping-bucket gauges, present weather sensors

Method references: specific to sites, not internationally applied

Ilvesniemi, H., Pumpanen, J., Duursma, R., Hari, P., Keronen, P., Kolari, P., et al. (2010). Water balance of a boreal Scots pine forest. Boreal Environment Research, 15(4), 375-396

Method references: established, internationally applied

World Meteorological Organization. (2010). Commission for Instruments and Methods of Observation (WMO-No. 1064). In W. M. Organization (Eds.), Fifteenth session - Abridged final report with resolutions and recommendationspp. 84). Available from http://www.wmo.int/pages/prog/www/CIMO/CIMO15-WMO1064/1064_en.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.53 W_storage ⇒ Soil water

Definition of *W_storage*: *The capacity of an ecosystem to store water when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil water content (SWC)

Important related indices

Concentration; ion ratio

Property: Frequency

Annual / seasonal

Property: Precision

To characterise the site (accurate measurements in combination with knowledge of soil properties important to derive soil water potential)

Property: Time scale (incl. seasonality), temporal resolution

Continuous - to characterise the site (when relevant), water contents and flow

Property: Basic spatial scale

Site/plot

Property: Base Units

%

Mandatory meta data

Location, plot/Area size, model tool reference, device reference

Method applied (key phrases)

Water balance, devices

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó;

Kanalas, P., Fenyvesi, A., Kis, J., Szollosi, E., Olah, V., Ander, I., et al. (2010). Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in ralation to microclimatic conditions. Acta Biologica Hungarica, 61, 95-108

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.54 W_storage ⇒ Soil moisture

Definition of *W_storage*: *The capacity of an ecosystem to store water when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Soil moisture

Important related indices

Property: Frequency

Continuous, at least in 3 replicates per soil layer at at least 3 different locations

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Continous

Property: Basic spatial scale

Point to field scale

Property: Base Units

Mandatory meta data

Location, area, soil map

Method applied (key phrases) Electromagnetic sensors (TDR), wireless soil moisture sensor networks (for plot to field scale), 3 depths including repetitions pf-Meter, tensiometer Method references: specific to sites, not internationally applied Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.55 W_storage ⇒ Water bodies

Definition of *W_storage*: *The capacity of an ecosystem to store water when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water depth and level

Important related indices

Concentration; ion ratio

Property: Frequency

Annual/seasonal;

level monthly

Property: Precision

To characterise the site (accurate measurements in combination with knowledge of soil properties important to derive soil water potential)

Property: Time scale (incl. seasonality), temporal resolution

Continuous - to characterise the site (when relevant), water contents and flow

Property: Basic spatial scale

Site/plot

Property: Base Units

%

Mandatory meta data

Location, plot/Area size, model tool reference, device reference

Method applied (key phrases)

Water balance, devices

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó;

Kanalas, P., Fenyvesi, A., Kis, J., Szollosi, E., Olah, V., Ander, I., et al. (2010). Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in ralation to microclimatic conditions. Acta Biologica Hungarica, 61, 95-108

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.56 W_output ⇒ **Evapotranspiration**

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Potential evapotranspiration (PET) - sum of evaporation and plant transpiration from the Earth's land surface to atmosphere

Important related indices

Property: Frequency

Annual, every 2-3 months;

monthly, daily

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Annual

Property: Basic spatial scale

Site, catchment

Property: Base Units

Mandatory meta data

Location, plot/area size, model tool reference

Method applied (key phrases)

From basic climate parameters, models, discharge weirs

Water Runoff gauge

e.g. Venturi flume, V-notch weir, Laser-Doppler

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.57 W_output ⇒ Surface runoff

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Surface runoff

Important related indices

Property: Frequency

Annual, every 2-3 months;

monthly, daily

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Annual

Property: Basic spatial scale

Site, catchment

Property: Base Units

Mandatory meta data

Location, plot/area size, model tool reference

Method applied (key phrases)

Water Runoff gauge

e.g. Venturi flume, V-notch weir, Laser-Doppler

Method references: specific to sites, not internationally applied

Jakucs, P. (1985). Ecology of an oak forest in Hungary (I. K. Kecskés, Trans.). Budapest: Akadémiai Kiadó

Method references: established, internationally applied

ICP IM Programme Centre Finnish Environment Institute (Helsinki, F. (2003). Manual for Integrated Monitoring - Convention on Long-range Transboundary Air Pollution of the UNECE Available from http://www.ymparisto.fi/default.asp?node=6329&lan=en;

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.1.58 W_efficiency measures ⇒ Water balance

Definition of *W_efficiency measures*: The water cycling affected by plant processes in the system.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Ratio transpiration / evaporation
Important related indices
Property: Frequency
Annual
Property: Precision
To characterise the site
Property: Time scale (incl. seasonality), temporal resolution
Annual
Property: Basic spatial scale
Plot/site
Property: Base Units
Mandatory meta data
Location, plot/area size, model tool reference
Method applied (key phrases)

Calculated/modelled

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

10.2 River Systems

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.1 Flora Diversity ⇒ Abundance of macrophytes (percentage cover) or phytobenthos

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Abundance of macrophytes (percentage cover) or phytobenthos

Important related indices

Shannon, Simpson, Species turn-over, Rarefaction curves, Phylogenetic diversity, Population growth rate, Eutrophication indicators e.g. ROTT

Property: Frequency

Annual

Property: Precision

Macrophytes with reference to Flora Europaea taxonomy, International Code of Botanical Nomenclature (Vienna Code),

Rare species are important and should be included;

Phytobenthos at least genus level

Property: Time scale (incl. seasonality), temporal resolution

Mostly summer. But in communities with strong seasonal gradients more than one sampling per year may be necessary (all species ocurring should be recorded).

Phytobenthos: sampling after prolonged periods of low water is recommended to avoid atypical communities in areas of intermittent inundation

Property: Basic spatial scale

Macrophytes: sampling of min. 100m reach, representative for the site, coverage of all microhabitats;

Phytobenthos: sampling of min. 20m reach, representative for the site, coverage of all microhabitats;

Sampling effort relative to microhabitat coverage within sampled reach

Property: Base Units

%,

number

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Macrophytes: Water Framework Directive-compliant vegetation relevee;

Phytobenthos: filamentous algae: estimate of percent coverage of each microhabitat, diatoms: at least 5 subsamples of approx. 100 cm² per reach, at least a pooled sample volume of 5ml sedimented Phytobenthos material; species detection at 1000-1500 magnification, determination of min. 400 diatoms per sample

Method references: specific to sites, not internationally applied

Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, P., et al. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica, 34(4), 283-301

Method references: established, internationally applied

European Commission Environment. The EU Water Framework Directive - integrated river basin management for Europe. from http://ec.europa.eu/environment/water/water-framework/index_en.html;

NS SHARE Project. (2005a). North South Shared Aquatic Resource (NS Share): Methods Manual I River Macrophytes. Retrieved from http://www.nsshare.com/publications/documents/Ecological%20Classification%20Tools/Methods%20Manual

s%20T1/Methods%20Manual%20I%20%20River%20Macrophyte.pdf

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.2 Fauna Diversity ⇒ Macroinvertebrate abundances

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Abundance of macroinvertebrates

Important related indices

Shannon, Simpson, Species turn-over, Rarefaction curves, Phylogenetic diversity, Population growth rate; Indices indicating organic pollution and hydromorphological degradation (ASPT/Saprobic indices/Fauna Indices)

Property: Frequency

Annual

Property: Precision

Determination of taxa down to the lowest feasible taxonomic level, e.g. as proposed by the EU Water Framework Directive compliant 'Operational Taxa List' (species level, at least genus level)

Property: Time scale (incl. seasonality), temporal resolution

Spring/summer; depends on stream type and ecoregion

Property: Basic spatial scale

Macroinvertebrates: sampling of min. 100m reach, representative for the site, coverage of all microhabitats;

Sampling effort relative to microhabitat coverage within sampled reach

Property: Base Units

Number

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water Framework Directive-compliant sampling protocol

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

European Commission Environment. The EU Water Framework Directive - integrated river basin management for Europe. from http://ec.europa.eu/environment/water/water-framework/index_en.html;

Kestemont, P., & Goffaux, D. (2002). Metric Selection and Sampling Procedures for FAME (D 4 - 6), Final Report: Development, Evaluation & Implementation of a Standardised Fish-based Assessment Method for the Ecological Status of European Rivers - A Contribution to the Water Framework Directive (FAME)pp. 90). Available from

http://fame.boku.ac.at/downloads/D4_6_metrics_and_sampling_procedure.pdf;

Sandin, L., Friberg, N., Furse, M., Clarke, R., & Larsen, S. (2004). Inter-calibration and harmonisation of "invertebrate methods", Standardisation of river classification: Framework method for calibrating different biological survey results against ecological classifications to be developed for the Water Framework Directivepp. 238). Available from http://www.eu-star.at/pdf/Deliverable8.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.3 Fauna Diversity ⇒ Fish: species list and abundances

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fish: species list and abundances

Important related indices

Shannon, Simpson, Species turn-over, Rarefaction curves, Phylogenetic diversity, Population growth rate; Indices indicating organic pollution and hydromorphological degradation, e.g. European Fish Index

Property: Frequency

Annual

Property: Precision

Species level

Property: Time scale (incl. seasonality), temporal resolution

Summer/fall; depends on stream type and ecoregion

Property: Basic spatial scale

Sampling of min. 200m reach (small stream), min 400m reach (large stream), coverage of all available microhabitats;

Sampling effort relative to microhabitat coverage within sampled reach

Property: Base Units

Number

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Electrofishing: Water Framework Directive-compliant protocol

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Fame Consortium. (2004). Manual for the application of the European Fish Index - EFI, A fish-based method to assess the ecological status of european rivers in support of the Water Framework Directive - FAMEpp. 92). Available from http://fame.boku.ac.at/downloads/manual_Version_Februar2005.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.4 Invasive species ⇒ Proportion of invasive to non-native species

Definition of Invasive species: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fauna & flora: Invasive species: (1) species numbers, (2) species abundance (e.g. related to native species)

Important related indices

Proportion of invasive/non-native species in a group

Property: Frequency

Monthly/yearly, depending on group

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (depending on lake size many points)

Property: Base Units

%

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,

design of sampling

Method applied (key phrases)

Depends on taxon (macrophyte, phytobenthos, macroinvertebrate, fish)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.5 Soil ⇒ Sediment characterization

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Sediment: Granulometric fractions

Important related indices

Sediment substrate composition

Property: Frequency

After disturbance events/ yearly;

Depending on river type, longer intervals may be sufficient

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Not very important

Property: Basic spatial scale

Generally three replicates per station

Property: Base Units

%, concentrations, ...

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,

design of sampling

Method applied (key phrases)

Box corer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.6 Soil ⇒ Sediment characterization

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Sediment: Proportion of organic contents

Important related indices

Sediment substrate composition

Property: Frequency

After disturbance events/ yearly;

Depending on river type, longer intervals may be sufficient

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Not very important

Property: Basic spatial scale

Generally three replicates per station

Property: Base Units

%, concentrations, ...

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,

design of sampling

Method applied (key phrases)

Box corer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.7 Water ⇒ Water: physico-chemistry, hydrologic parameters

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Temperature

Important related indices

Daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Ideal resolution: daily or higher measuring frequency.

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Depends on parameter, preferably SI units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Loggers

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

CP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.8 Water ⇒ Water: physico-chemistry, hydrologic parameters

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Turbidity

Important related indices

Daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Ideal resolution: daily or higher measuring frequency.

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Depends on parameter, preferably SI units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Loggers

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

CP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.9 Water ⇒ Water: physico-chemistry, hydrologic parameters

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: (1) Conductivity, (2) pH)

Important related indices

Daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Ideal resolution: daily or higher measuring frequency.

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Depends on parameter, preferably SI units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Loggers

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

CP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.10 Water ⇒ Water: physico-chemistry, hydrologic parameters

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Gauge level (or discharge)

Important related indices

Daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Ideal resolution: daily or higher measuring frequency.

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Depends on parameter, preferably SI units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Loggers

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

CP Waters Programme Centre. (2010). ICP Waters Programme Manual 2010pp. 91). Available from http://www.icp-waters.no/LinkClick.aspx?fileticket=Sk4xcfQaPGo%3d&tabid=61

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.11 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Air: Temperature

Important related indices

Wind fetch

Property: Frequency

Continuous/daily, for analysis these data can be used to calculate monthly/seasonla/annual means...

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,
design of sampling

Method applied (key phrases)

Automatic sampling devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.12 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Air: (1) Wind direction, (2) Wind speed

Important related indices

Wind fetch

Property: Frequency

Continuous/daily, for analysis these data can be used to calculate monthly/seasonla/annual means...

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,

design of sampling

Method applied (key phrases)

Automatic sampling devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.13 Habitat ⇒ Habitat type diversity

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Habitat: Diversity and coverage of different microhabitat types

Important related indices

Shannon,

Spatial diversity indices

Property: Frequency

Annually

Property: Precision

Field estimates, coverages can be reliably estimated on a 5% interval, microhabitat classification e.g. according to AQEM/STAR site protocol

Property: Time scale (incl. seasonality), temporal resolution

Annual, together with biotic sampling

Property: Basic spatial scale

Plot/stream reach

Property: Base Units

Survey date, location, plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.14 Habitat ⇒ Hydromorphological intactness

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Hydromorphology of the stream reach

Important related indices

Property: Frequency

5-annually

Property: Precision

Hydromorphology can be classified according to AQEM/STAR site protocol (estimates in 5/10/20% steps, according to variable); land use is best assessed with CORINE land use data / GIS

Property: Time scale (incl. seasonality), temporal resolution

Uncritical, best together with biotic sampling

Property: Basic spatial scale

Site/landscape

Property: Base Units

Mandatory meta data

Survey date, location, plot/area size, frequency of observations, biotope description, method reference,

design of sampling

Method applied (key phrases)

Hydromorphology: WFD-compliant protocol (http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:EN:NOT);

land use: CORINE/EUNIS land use/habitats;

EU Habitat Directive (connection to remote sensing)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.15 Habitat ⇒ Land use in catchment

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Coverage of land use classes (at least CORINE) in catchment

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.16 E_input ⇒ **Radiation**: total irradiance, PAR; Temperature: heat fluxes

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Water temperature, (2) radiation (direct, diffuse, PAR)

Important related indices

Temperature: daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Ideal resolution for temperature: daily or higher measuring frequency;

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year (temperature);

Summer (PAR)

Property: Basic spatial scale

Site

Property: Base Units

Diverse

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Temperature loggers, remote sensing

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Finnish Environment Institute. (2004). ICP IM manual - Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en;

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

World Meterological Organization. (2008 (Updated in 2010)). Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). In W. M. Organization (Eds.) Available from http://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html, http://www.wmo.int/pages/themes/wmoprod/guides.html

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.17 E_storage ⇒ **Biomass**

Definition of *E_storage*: The capacity of an ecosystem to store nutrients, energy and water when available and to release them when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Biomass

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.18 E_storage ⇒ **Nitrogen fixation**

Definition of *E_storage*: *The capacity of an ecosystem to store energy when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nitrogen fixation

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.19 E_output ⇒ Albedo

Definition of *E_output*: *Non-convertible energy fractions which are exported into the environment of the system.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Albedo (diffuse reflectivity of a surface)

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.20 E_output ⇒ **Respiration**

Definition of *E_output*: *Non-convertible energy fractions which are exported into the environment of the system.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Respiration (production of carbon dioxide by living organisms)

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.21 E_output ⇒ **Drift**

Definition of *E_output*: *Non-convertible energy fractions which are exported into the environment of the system.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Drift

Important related indices

Property: Frequency

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.22 M_input ⇒ Suspended organic particles

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Devices

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.23 M_input ⇒ **Nutrients** (N)

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator PARAMETER: Nutrient input: (1) total N, (2) NO3-N, NH4-N **Important related indices Property: Frequency** Monthly **Property: Precision** Instrumental Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Site **Property: Base Units** Mandatory meta data Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Devices

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.24 M_input ⇒ **Nutrients** (P)

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) total P, (2) soluble reactive phosphorus (SPR)

Important related indices

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Devices

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.25 M_storage ⇒ Living biomass

Definition of *M_storage*: The capacity of an ecosystem to store nutrients when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Biomass of phytobenthos, (2) Chlorophyll

Important related indices

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.26 M_storage ⇒ Living biomass

Definition of *M_storage*: The capacity of an ecosystem to store nutrients when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Biomass of main groups of consumers (fish, benthic invertebrates, plankton in large rivers)

Important related indices

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.27 M_storage ⇒ Dead biomass

Definition of *M_storage*: The capacity of an ecosystem to store nutrients when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER: Mass of organic sediments Important related indices Property: Frequency** Monthly **Property: Precision** Instrumental Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Point/plot measurement **Property: Base Units** Mandatory meta data Location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.28 M_output ⇒ Loss of suspended organic particles

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient output: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Property: Frequency

Variable

Property: Precision

Variable

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.29 M_output ⇒ Loss of nutrients (N)

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator PARAMETER: Nutrient output: (1) total N, (2) NO3-N, NH4-N **Important related indices Property: Frequency** Variable **Property: Precision** Variable Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Point/plot measurement **Property: Base Units** Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope
description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.30 M_output ⇒ Loss of nutrients (P)

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator PARAMETER: Nutrient output: (1) total P, (2) soluble reactive phosphorus (SPR) **Important related indices Property: Frequency** Variable **Property: Precision** Variable Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Point/plot measurement **Property: Base Units** Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.31 M_output ⇒ Drift rates, emergence data, harvesting

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Drift rates of benthic invertebrates
Important related indices
Property: Frequency
Variable
Property: Precision
Variable
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Point/plot measurement
Property: Base Units
Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.32 M_output ⇒ **Drift** rates, emergence data, harvesting

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fishing yields

Important related indices

Property: Frequency

Variable

Property: Precision

Variable

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.33 M_output ⇒ Drift rates, emergence data, harvesting

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Biomass of emerging insects
Important related indices
Property: Frequency
Variable
Property: Precision
Variable
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Point/plot measurement
Property: Base Units
Mandatory meta data

Location, plot/area size that this measurement is representative for, frequency of observations, biotope

description

Method applied (key phrases)

Drift rates: drift netting

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.34 W_input ⇒ **Precipitation**

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Precipitation

Important related indices

Property: Frequency

Ideal resolution: daily or higher measuring frequency

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.35 W_input ⇒ Discharge upstream of monitored reach

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Discharge upstream of monitored reach

Important related indices

Property: Frequency

Ideal resolution: daily or higher measuring frequency

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.36 W_storage ⇒ Water retention, storage

Definition of *W_storage*: The capacity of an ecosystem to store water when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water velocity or water retention time

Important related indices

Property: Frequency

Daily

Property: Precision

Instrumental or model

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.37 W_output ⇒ Discharge at downstream end of monitored reach, evaporation

Definition of W_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Discharge at downstream end of monitored reach

Important related indices

Property: Frequency

Ideal resolution: daily or higher measuring frequency

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.2.38 W_output ⇒ Discharge at downstream end of monitored reach, evaporation

Definition of W_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Evaporation

Important related indices

Property: Frequency

Ideal resolution: daily or higher measuring frequency

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

location, plot/area size that this measurement is representative for, frequency of observations, biotope description

Method applied (key phrases)

Devices

Method references: specific to sites, not internationally applied

10.3 Lake Systems

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.1 Flora Diversity ⇒ Flora diversity indices (taxonomic, functional) on primary producers

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Flora: Abundance of macrophytes (percentage cover)

Important related indices

See species richness measures in Base units column;

Shannon

Property: Frequency

Once a year in the growth season

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (small lakes);

Large lakes: several sampling points to cover within-lake heterogeneities

Property: Base Units

Species richness: no. of species/lake

Species density: number of species/m2 km2 or m3

Rarefied species richness: e.g. number of species/100 or 1000 sampled individuals

% of biomass (% abundance of particular phytoplankton taxa)

mg/m3 (biomass of particular phytoplankton taxa)

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Vegetation relevees; Water column sampling, different levels (depths);

Consider collection with a pipe of integrated water sample from epilimnion/euphotic zone

Method references: specific to sites, not internationally applied

Ozimek, T., & Kowalczewski, A. (1984). Long-term changes of the submerged macrophytes in eutrophic lake Mikolajskie (North Poland). [Article]. Aquatic Botany, 19(1-2), 1-11;

Wellburn, A. R. (1994). The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotinoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313;

YSI Environmental. (2011). The Basics of Chlorophyll Measurement. from http://www.ysi.com/parametersdetail.php?Chlorophyll-6

Method references: established, internationally applied

CEN (European Committee for Standardization). (2006). EN 15204:2006; Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique);

CEN (European Committee for Standardization). (2007). EN 15460:2007; Water quality - Guidance standard for the surveying of macrophytes in lakes;

Cerny, M. (1999). MOLAR - MOuntain LAke Research - Measuring and Modelling the Dynamic Response of Remote Mountain Lake Ecosystems to Environmental Change. EU project no. ENV4-CT95-0007 from http://www.mountain-lakes.org/molar/;

MacIsaac, E. A., & Stockner, J. G. (1993). Enumeration of phototrophic picoplankton by autofluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 187-198). Boca Raton, Fla: Crc Pr Inc.;

Wetzel, R. G., & Likens, G. E. (1991). Limnological Analyses. New York: Springer

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.2 Flora Diversity ⇒ Flora diversity indices (taxonomic, functional) on primary producers

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Flora: Abundance of phythoplankton: biovolumes of (1) Cyanobacteria (particularly bloom-forming species; N2-fixers), (2) Bacillariophyceae, (3) Chlorophytes, (4) Dinoflagellates, (5) picopytoplankton

Important related indices

Property: Frequency

Phytoplankton and microphytobenthos (monthly or fortnightly).

Property: Precision

Up to species level, at least genus in (1)-(4); for picophytoplankton only total abundance and biovolume

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403-424

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.3 Fauna Diversity ⇒ Fauna diversity indices (taxonomic, functional)

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fauna: Species abundance of (1) rotifers, (2) crustacean zooplankton, (3) copepods

Important related indices

E.g. % Abundance of cyprinid fish, for other indices see Base units column; Shannon; Species richness: no. of species/lake; Species density: number of species/sampled area; Rarefied species richness: e.g. number of species/100 or 1000 sampled individuals; Percent (%) similarity to the model community (PMA, see important indices); Biomass g/m2; Percent model affinity. This index is based on model community comprising the communities of refence site i.e. the sites of pristine or near-natural conditions. Suitable for any group of organisms actually, need for comprising reference model community; Benthic Quality Index (Suitable for assessment of eutrophication and oxygen conditions of hypolimnial zone in Northern Europe.) The index is based on few profundal (deep bottom) macroinvertebrate taxa

Property: Frequency

Monthly / yearly, depending on group

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (depending on lake size many points)

Property: Base Units

Species richness: no. of species/lake

Species density: number of species/m2 or km2

Rarefied species richness: e.g. number of species/100 or 1 000 sampled individuals

% of biomass (% abundance of particular taxa of interest)

mg/m3 (biomass of particular zooplankton taxa of interest)

Catch per unit of effort in gill-net fishing:

e.g. kg/gill-net/day or no. of ind./gill-net/day

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Fish relevees; Water column sampling, different levels (depths);

Consider collection with a pipe of integrated water sample from epilimnion/euphotic zone

Method references: specific to sites, not internationally applied

Bíró, P., Specziár, A., & Keresztessy, K. (2003). Diversity of fish species assemblages distributed in the drainage area of Lake Balaton (Hungary). Hydrobiologia, 506-509(1), 459-464;

Gerking, S. D. (1957). A Method of Sampling the Littoral Macrofauna and Its Application. Ecology, 38(2), 219-226;

Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. Journal of the North American Benthological Society, 11(1), 80-85;

Parpală, L., G.-Tóth, L., Zinevici, V., Németh, P., & Szalontai, K. (2003). Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. Hydrobiologia, 506-509(1), 347-351;

Tolonen, K. T., & Hamalainen, H. (2010). Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(1), 43-59;

Wiederholm, T. (1980). Use of Benthos in Lake Monitoring. Journal (Water Pollution Control Federation), 52(3), 537-547

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.4 Fauna Diversity ⇒ Fauna diversity indices (taxonomic, functional)

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fauna: Species abundance of benthic invertebrates

Important related indices

E.g. % Abundance of cyprinid fish, for other indices see Base units column; Shannon; Species richness: no. of species/lake; Species density: number of species/sampled area; Rarefied species richness: e.g. number of species/100 or 1000 sampled individuals; Percent (%) similarity to the model community (PMA, see important indices); Biomass g/m2; Percent model affinity. This index is based on model community comprising the communities of refence site i.e. the sites of pristine or near-natural conditions. Suitable for any group of organisms actually, need for comprising reference model community; Benthic Quality Index (Suitable for assessment of eutrophication and oxygen conditions of hypolimnial zone in Northern Europe.) The index is based on few profundal (deep bottom) macroinvertebrate taxa

Property: Frequency

Monthly / yearly, depending on group

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (depending on lake size many points)

Property: Base Units

Species richness: no. of species/lake

Species density: number of species/m2 or km2

Rarefied species richness: e.g. number of species/100 or 1 000 sampled individuals

% of biomass (% abundance of particular taxa of interest)

mg/m3 (biomass of particular zooplankton taxa of interest)

Catch per unit of effort in gill-net fishing:

e.g. kg/gill-net/day or no. of ind./gill-net/day

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Fish relevees; Water column sampling, different levels (depths);

Consider collection with a pipe of integrated water sample from epilimnion/euphotic zone

Method references: specific to sites, not internationally applied

Bíró, P., Specziár, A., & Keresztessy, K. (2003). Diversity of fish species assemblages distributed in the drainage area of Lake Balaton (Hungary). Hydrobiologia, 506-509(1), 459-464;

Gerking, S. D. (1957). A Method of Sampling the Littoral Macrofauna and Its Application. Ecology, 38(2), 219-226;

Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. Journal of the North American Benthological Society, 11(1), 80-85;

Parpală, L., G.-Tóth, L., Zinevici, V., Németh, P., & Szalontai, K. (2003). Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. Hydrobiologia, 506-509(1), 347-351;

Tolonen, K. T., & Hamalainen, H. (2010). Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(1), 43-59;

Wiederholm, T. (1980). Use of Benthos in Lake Monitoring. Journal (Water Pollution Control Federation), 52(3), 537-547

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.5 Fauna Diversity ⇒ Fauna diversity indices (taxonomic, functional)

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fauna: Species abundance of fish

Important related indices

E.g. % Abundance of cyprinid fish, for other indices see Base units column; Shannon; Species richness: no. of species/lake; Species density: number of species/sampled area; Rarefied species richness: e.g. number of species/100 or 1000 sampled individuals; Percent (%) similarity to the model community (PMA, see important indices); Biomass g/m2; Percent model affinity. This index is based on model community comprising the communities of refence site i.e. the sites of pristine or near-natural conditions. Suitable for any group of organisms actually, need for comprising reference model community; Benthic Quality Index (Suitable for assessment of eutrophication and oxygen conditions of hypolimnial zone in Northern Europe.) The index is based on few profundal (deep bottom) macroinvertebrate taxa

Property: Frequency

Monthly/yearly, depending on group

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (depending on lake size many points)

Property: Base Units

Species richness: no. of species/lake

Species density: number of species/m2 or km2

Rarefied species richness: e.g. number of species/100 or 1 000 sampled individuals

% of biomass (% abundance of particular taxa of interest)

mg/m3 (biomass of particular zooplankton taxa of interest)

Catch per unit of effort in gill-net fishing:

e.g. kg/gill-net/day or no. of ind./gill-net/day

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Fish relevees; Water column sampling, different levels (depths);

Consider collection with a pipe of integrated water sample from epilimnion/euphotic zone

Method references: specific to sites, not internationally applied

Bíró, P., Specziár, A., & Keresztessy, K. (2003). Diversity of fish species assemblages distributed in the drainage area of Lake Balaton (Hungary). Hydrobiologia, 506-509(1), 459-464;

Gerking, S. D. (1957). A Method of Sampling the Littoral Macrofauna and Its Application. Ecology, 38(2), 219-226;

Novak, M. A., & Bode, R. W. (1992). Percent Model Affinity: A New Measure of Macroinvertebrate Community Composition. Journal of the North American Benthological Society, 11(1), 80-85;

Parpală, L., G.-Tóth, L., Zinevici, V., Németh, P., & Szalontai, K. (2003). Structure and production of the metazoan zooplankton in Lake Balaton (Hungary) in summer. Hydrobiologia, 506-509(1), 347-351;

Tolonen, K. T., & Hamalainen, H. (2010). Comparison of sampling methods and habitat types for detecting impacts on lake littoral macroinvertebrate assemblages along a gradient of human disturbance. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(1), 43-59;

Wiederholm, T. (1980). Use of Benthos in Lake Monitoring. Journal (Water Pollution Control Federation), 52(3), 537-547

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.6 Invasive species ⇒ Proportion of invasive to non-native species

Definition of Invasive species: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Flora & fauna: Invasive species numbers and abundances in relation to native species

Important related indices

Property: Frequency

Monthly/yearly, depending on group

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point (depending on lake size many points)

Property: Base Units

%

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Vegetation relevees; fish relevees;

Water column sampling, different levels (depths);

Consider collection with a pipe of integrated water sample from epilimnion/euphotic zone

Method references: specific to sites, not internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.7 Soil ⇒ Sediment: Particle size distribution

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Sediment: granulometric fractions

Important related indices

Sediment substrate composition

Property: Frequency

Yearly;

Longer intervals may be sufficient

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Not very important

Property: Basic spatial scale

Generally three replicates per station

Property: Base Units

%, concentrations, ...

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Box corer; Kajak-type circular corer is commonly used in lakes, at least in Nordic countries

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.8 Water ⇒ Seasonal/annual dynamics of temperature

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Temperature (from surface to the bottom)

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

High if profiling probes are used

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: µg/l or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.9 Water ⇒ Seasonal/annual dynamics of oxygen

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Oxygen (from surface to the bottom)

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

High if profiling probes are used

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: µg/l or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.10 Water ⇒ Seasonal/annual dynamics of salinity and conductivity

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Salinity and conductivity

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

High if profiling probes are used: temperature, oxygen, salinity and conductivity may be measured simultaneously using a multi-parameter probe

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: $\mu g/l$ or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.11 Water ⇒ Seasonal/annual dynamics of turbidity

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Turbidity

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

Medium; depending on method used

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: µg/l or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.12 Water ⇒ Seasonal/annual dynamics of nutrients

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: Nutrient concentrations (total phosphor TP, total nitrogen TN, Si)

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

High, if autoanalyzer or Ion-exchange chromatography (SOP's) are used

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: µg/l or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.13 Water ⇒ Seasonal/annual dynamics of pH

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: pH

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

Medium

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point measures (for large lakes several points are necessary). The best solution is to have the information of this parameters in the same point of the biotic indicators.

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: µg/l or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.14 Water ⇒ Seasonal/annual dynamics of transparancy, water color

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water: (1) Secchi depth, (2) color (humic substances)

Important related indices

Tpmix; C:P stochiometry; C:N stochiometry epilimnion thickness

Property: Frequency

Monthly /fortnightly

Property: Precision

Medium

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

uffic

Property: Base Units

Oxygen saturation: % of the maximum

Oxygen concentration: mg/l

Nutrient concentrations: $\mu g/l$ or mg/l

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling/ different levels (depths)

Method references: specific to sites, not internationally applied

ISE - CNR Water Chemistry Laboratory. (2012, 2012). Analytical methods from http://www.idrolab.ise.cnr.it/index.php?option=com_content&view=article&id=71&Itemid=59&Iang=en

Method references: established, internationally applied

CEN (European Committee for Standardization). (2004). EN ISO 6878:2004; Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004);

CEN (European Committee for Standardization). (1992a). EN 25813:1992; Water quality - Determination of dissolved oxygen - Iodometric method (ISO 5813:1983);

CEN (European Committee for Standardization). (1992b). EN 25814:1992; Water quality - Determination of dissolved oxygen - Electrotechnical probe method (ISO 5814:1990);

CEN (European Committee for Standardization). (1996). EN ISO 13395:1996; Water quality - Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection (ISO 13395:1996);

CEN (European Committee for Standardization). (2004b). EN ISO 15681-1:2004; Water quality - Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) - Part 1: Method by flow injection analysis (FIA) (ISO 15681-1:2003);

CEN (European Committee for Standardization). (1998). EN ISO 11905-1:1998; Water quality - Determination of nitrogen - Part 1: Method using oxidative digestion with peroxodisulfate (ISO 11905-1:1997);

CEN (European Committee for Standardization). (2005). EN ISO 11732:2005; Water quality - Determination of ammonium nitrogen - Method by flow analysis (CFA and FIA) and spectrometric detection (ISO 11732:2005);

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.;

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific;

Noges, P., Noges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijow, R., et al. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 506(1-3), 51-58

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.15 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Air: Temperature

Important related indices

Wind fetch

Property: Frequency

Continuous/daily, for analysis these data can be used to calculate monthly/seasonal/annual means...

Property: Precision

Sufficient for calculations targeting at energy budget, heat flux etc.

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Automatic sampling devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.16 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Air: (1) wind direction, (2) wind speed

Important related indices

Wind fetch

Property: Frequency

Continuous/daily, for analysis these data can be used to calculate monthly/seasonal/annual means...

Property: Precision

Sufficient for calculations targeting at energy input

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Site

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Automatic sampling devices

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.17 Habitat ⇒ Habitat type diversity and coverage

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species,

for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Habitat: Coverage of different microhabitat types (e.g. proportion of littoral habitat types of the shoreline like stony, sandy, soft-organic bottom, vegetated)

Important related indices

Shannon; spatial diversity indices

Property: Frequency

Annually

Property: Precision

Field estimates, coverages can be reliably estimated on a 5% interval

Property: Time scale (incl. seasonality), temporal resolution

Annual, together with biotic sampling

Property: Basic spatial scale

Plot/whole lake

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.18 Habitat ⇒ Catchment: land use

Definition of Habitat: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Coverage of land use classes (at least CORINE) in catchment

Important related indices

Property: Frequency

Annual

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.19 E_input ⇒ **Temperature**

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water temperature (redundant with Abiotic Heterogeneity parameter)

Important related indices

Temperature: daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Daily

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year (temperature) summer (chl a)

Property: Basic spatial scale

Site

Property: Base Units

°C, etc.

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Temperature loggers,

Remote sensing

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Finnish Environment Institute. (2004). ICP IM manual - Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en;

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.20 E_input ⇒ **Radiation**

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Radiation (direct, diffuse, PAR)

Important related indices

Temperature: daily/monthly/seasonal/annual means, maxima, minima, amplitudes

Property: Frequency

Daily

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All year (temperature) summer (chl a)

Property: Basic spatial scale

Site

Property: Base Units

°C, etc.

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Temperature loggers,

Remote sensing

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Finnish Environment Institute. (2004). ICP IM manual - Methodology and Reporting of Subprogrammes. from http://www.ymparisto.fi/default.asp?node=6412&lan=en;

UNECE (United Nations Economic Commission for Europe). (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Available from http://icp-forests.net/page/icp-forests-manual;

WMO Observing and Information Systems Department. Instruments and Methods of Observation. from http://www.wmo.int/pages/prog/www/IMOP/IMOP-home.html

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.21 E_storage ⇒ Biomass, Chlorophyll

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it

when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Chlorophyll a, (2) biomass of phytoplankton etc. (estimated from cell volume and abundance) [redundant with Flora Diversity parameter]

Important related indices

Property: Frequency

Monthly /fortnightly

Property: Precision

METHOD NEEDS TO BE SPECIFIED for Accuracy assessment!

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Station

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.22 E_output ⇒ Light reflection

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Albedo (diffuse reflectivity of a surface)

Important related indices

Property: Frequency

Yearly

Property: Precision

Estimation

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Model

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.23 E_output ⇒ **Respiration**

Definition of E_{output} : Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Respiration (production of carbon dioxide by living organisms)

Important related indices

Property: Frequency

Yearly

Property: Precision

medium; depending on quality of oxygen sensor

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Model

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.24 E_output ⇒ Heat fluxes

Definition of *E_output*: *Non-convertible energy fractions which are exported into the environment of*

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Heat fluxes

Important related indices

Property: Frequency

Yearly

Property: Precision

Estimation

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Model

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.25 M_input ⇒ Nutrient inputs via precipitation, run-off

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Stoichiometric ratios

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.26 M_input ⇒ **Nutrient inputs via precipitation, run-off**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Nutrient input: (1) Total N, (2) NO3-N, NH4-N
Important related indices
Stoichiometric ratios
Property: Frequency
Monthly
Property: Precision
Instrumental
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Point/plot measurement
Property: Base Units
Mandatory meta data
Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.27 M_input ⇒ **Nutrient inputs via precipitation, run-off**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) Total P, (2) soluble reactive phosphorus (SPR)

Important related indices

Stoichiometric ratios

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Clesceris, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater (20 ed.);

Golterman, H. L., Clymo, R. S., & Ohnstad, A. M. (1978). Methods for physical and chemical analysis of fresh waters: Blackwell Scientific

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.28 M_storage ⇒ Living biomass

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Biomass

Important related indices

Average POC

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.29 M_storage ⇒ **Biologically available carbon in water and sediments**

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) DOC, (2) POC

Important related indices

Average POC

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.30 M_storage ⇒ **Nitrogen** in water and sediments

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) total N, (2) NO3-N, NH4-N [split into biomass and other parameters]

Important related indices

Average POC

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.31 M_storage ⇒ **Phosphorus in water and sediments**

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) total P, (2) soluble reactive phosphorus (SPR)

Important related indices

Average POC

Property: Frequency

Monthly

Property: Precision

Instrumental

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Point/plot measurement

Property: Base Units

Mandatory meta data

Water column sampling, different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.32 M_output ⇒ Sedimentation

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER: Sediment mass and contents Important related indices** Sedimentation rate **Property: Frequency** Yearly integrated **Property: Precision** Property: Time scale (incl. seasonality), temporal resolution **Property: Basic spatial scale** Point / plot / whole lake **Property: Base Units** Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Sediment traps integrated measure for unit area

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.33 M_output ⇒ **Outflow**

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: DOC, POC etc in outflow

Important related indices

Sedimentation rate

Property: Frequency

Yearly integrated

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Point / plot / whole lake

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Sediment traps integrated measure for unit area

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.34 M_output ⇒ Harvesting

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER:** Fishing yields **Important related indices** Sedimentation rate **Property: Frequency** Yearly integrated **Property: Precision** Property: Time scale (incl. seasonality), temporal resolution **Property: Basic spatial scale** Point / plot / whole lake **Property: Base Units**

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Sediment traps integrated measure for unit area

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: Ecosystem Processes ⇒ Matter Budget

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.35 M_output ⇒ **Outflow**

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Biomass of emerging insects

Important related indices

Sedimentation rate

Property: Frequency

Yearly integrated

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Point / plot / whole lake

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Sediment traps integrated measure for unit area

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.36 M_efficiency measures ⇒ **Trophic transfer efficency**

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Primary consumers (kg C/ha/year)/primary production (kg C/ha/year), (2) Carbon content of primary consumers/Carbon content of primary consumers

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Plot

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope description, method reference, design of sampling

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.37 M_efficiency measures ⇒ Trophic transfer efficency

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Ratio of secondary consumers/production of primary consumers

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Plot

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.38 M_efficiency measures ⇒ Matter breakdown rates

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Leaf litter breakdown (experimental)
Important related indices
Property: Frequency
Yearly integrated
Property: Precision
Property: Time scale (incl. seasonality), temporal resolution
Property: Basic spatial scale
Plot
Property: Base Units
Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.39 M_efficiency measures ⇒ **Production to biomass ratio**

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Ratios of primary production (kg C/ha/year) / total living biomass (kg C/ha)

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Plot

Property: Base Units

Mandatory meta data

Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.40 W_input ⇒ Precipitation

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Precipitation

Important related indices

Property: Frequency

Daily

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.41 W_input ⇒ Catchment input

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Discharge of inflowing streams

Important related indices

Property: Frequency

Daily

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.42 W_input ⇒ Catchment input

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Groundwater inflow

Important related indices

Property: Frequency

Daily

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

Property: Basic spatial scale

Basin scale

Property: Base Units

Mandatory meta data

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.43 W_storage ⇒ Water level

Definition of *W_storage*: *The capacity of an ecosystem to store water when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water level

Important related indices

Property: Frequency

Daily/weekly

Property: Precision

Measurement

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

cm

Mandatory meta data

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.44 W_output ⇒ **Outflow**

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Discharge of outflowing stream
Important related indices
Annual outflow, residence time
Property: Frequency
Daily/weekly
Property: Precision
Measurement/Estimation
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Basin scale
Property: Base Units
Mandatory meta data
Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

Method applied (key phrases)

Measurement/ model

Method references: specific to sites, not internationally applied
El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.3.45 W_output ⇒ Evaporation

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Evaporation
Important related indices
Annual outflow, residence time
Property: Frequency
Daily/weekly
Property: Precision
Measurement/Estimation
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Basin scale
Property: Base Units
Mandatory meta data
Survey date, location (latitude, longitude and depth), plot/area size, frequency of observations, biotope

description, method reference, design of sampling

Method applied (key phrases)

Measurement/ model

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

10.4 Marine Systems

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.1 Flora Diversity ⇒ List of species, diversity indices

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Phytoplankton: Species richness of Bacillariophyceae, Prymnesiophyceae, Dinoflagellates, Nanoflagellates, Cyanobacteria

Important related indices

Shannon, Hulburt, Margalef, Menhinick

Property: Frequency

Phytoplankton: monthly/fortnightly

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station for phytoplankton, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

Phytoplankton: cells l-1 (abundance), mg C l-1 (biomass).

Mandatory meta data

Phytoplankton: survey date and time, location, site depth, sampling depths, frequency of observations, method reference.

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths) for phytoplankton;

Net samples collected at the same dates;

Macrophytes: transect mapping, for microphytobenthos selected sites along the transect, representative for the respective substrate available at the depth stages

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.2 Flora Diversity ⇒ Absolute and relative abundance, diversity indices

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Phytoplankton: Abundance (total, %) and biomass of Bacillariophyceae, Prymnesiophyceae, Dinoflagellates, Nanoflagellates, Cyanobacteria

Important related indices

Shannon, Hulburt, Margalef, Menhinick

Property: Frequency

Phytoplankton: monthly/fortnightly

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station for phytoplankton, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

Phytoplankton: cells l-1 (abundance), mg C l-1 (biomass).

Mandatory meta data

Phytoplankton: survey date and time, location, site depth, sampling depths, frequency of observations, method reference.

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths) for phytoplankton;

Net samples collected at the same dates;

Macrophytes: transect mapping, for microphytobenthos selected sites along the transect, representative for the respective substrate available at the depth stages

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403-424;

Intergovernmental Oceanographic Commission of UNESCO. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.)pp. 110). Available from http://www.mbari.org/ESP/pdfs/Marin%20and%20Scholin_2010.pdf

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.3 Flora Diversity ⇒ Seagrasses: number of species and abundance

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Seagrasses: (1) presence, (2) cover, (3) shoot density

Important related indices

Seagrasses: density classes and G/N for genetic diversity.

Epiphytes: Shannon-Wiener, R/O

Property: Frequency

Seagrass density: once in a year

Seasonal for the other parameters

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations according to the depth gradient

Property: Base Units

Seagrass: density = no. of shoots m-2

Macroepiphytes: cover = % of leaf area.

Diatoms: no. of cells in 1.25 mm².

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Seagrasses: shoot density. 10 shoot counts are performed by trained operators each within 1600cm2 quadrats; mean value is reported to 1 squre meter.

Macroalgal epiphytes: 20 shoots are sampled in areas of the meadow with homogeneous characteristics. The covering of individual species or of groups of species is assessed in terms of leaf area covered by the orthogonal projection of the alga onto the leaf.

Microepiphytes: 5 shoots are sampled, 3 fragments of 1 cm2 in the basal, central and distal part of the blade are selected and a total surface of 1.25 mm2 is observed by SEM. Genomic DNA is extracted from each single shoot

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.4 Flora Diversity ⇒ Seagrasses: Genetic diversity

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Seagrasses: Genetic diversity

Important related indices

Seagrasses: density classes and G/N for genetic diversity.

Epiphytes: Shannon-Wiener, R/O

Property: Frequency

Seagrass density: once in a year

Seasonal for the other parameters

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations according to the depth gradient

Property: Base Units

Seagrass: density = no. of shoots m-2

Macroepiphytes: cover = % of leaf area.

Diatoms: no. of cells in 1.25 mm².

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Seagrasses: shoot density. 10 shoot counts are performed by trained operators each within 1600cm2 quadrats; mean value is reported to 1 squre meter.

Macroalgal epiphytes: 20 shoots are sampled in areas of the meadow with homogeneous characteristics. The covering of individual species or of groups of species is assessed in terms of leaf area covered by the orthogonal projection of the alga onto the leaf.

Microepiphytes: 5 shoots are sampled, 3 fragments of 1 cm2 in the basal, central and distal part of the blade are selected and a total surface of 1.25 mm2 is observed by SEM. Genomic DNA is extracted from each single shoot

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.5 Flora Diversity ⇒ Macro and microphytobenthos

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Macro and microphytobenthos: presence and cover of Rhodophyta, Ochrophyta, Chlorophyta, R/O, Diatoms

Important related indices

Seagrasses: density classes and G/N for genetic diversity;

Epiphytes: Shannon-Wiener, R/O

Property: Frequency

Seagrass density: once in a year

Seasonal for the other parameters

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations according to the depth gradient

Property: Base Units

Seagrass: density = no. of shoots m-2

Macroepiphytes: cover = % of leaf area.

Diatoms: no. of cells in 1.25 mm².

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Seagrasses: shoot density. 10 shoot counts are performed by trained operators each within 1600cm2 quadrats; mean value is reported to 1 squre meter.

Macroalgal epiphytes: 20 shoots are sampled in areas of the meadow with homogeneous characteristics. The covering of individual species or of groups of species is assessed in terms of leaf area covered by the orthogonal projection of the alga onto the leaf.

Microepiphytes: 5 shoots are sampled, 3 fragments of 1 cm2 in the basal, central and distal part of the blade are selected and a total surface of 1.25 mm2 is observed by SEM. Genomic DNA is extracted from each single shoot

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.6 Flora Diversity ⇒ Macro and microphytobenthos

Definition of Flora Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Macro and microphytobenthos: Morpho-functional groups

Important related indices

Seagrasses: density classes and G/N for genetic diversity;

Epiphytes: Shannon-Wiener, R/O

Property: Frequency

Seagrass density: once in a year

Seasonal for the other parameters

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations according to the depth gradient

Property: Base Units

Seagrass: density = no. of shoots m-2

Macroepiphytes: cover = % of leaf area.

Diatoms: no. of cells in 1.25 mm².

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Seagrasses: shoot density. 10 shoot counts are performed by trained operators each within 1600cm2 quadrats; mean value is reported to 1 squre meter.

Macroalgal epiphytes: 20 shoots are sampled in areas of the meadow with homogeneous characteristics. The covering of individual species or of groups of species is assessed in terms of leaf area covered by the orthogonal projection of the alga onto the leaf.

Microepiphytes: 5 shoots are sampled, 3 fragments of 1 cm2 in the basal, central and distal part of the blade are selected and a total surface of 1.25 mm2 is observed by SEM. Genomic DNA is extracted from each single shoot

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.7 Fauna Diversity ⇒ Micro and mesozooplankton: List of species, diversity indices

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Micro and mesozooplankton: species richness

Important related indices

Shannon, Margalef, Pielou, Simpson

Property: Frequency

Zooplankton: monthly / fortnightly

As above for macrozoobenthos, Nekton needs to be investigated by a different approach, it cannot be taken at "points" and recruitement as well as population age structure must be taken into account

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station for zooplankton, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

Zooplankton: ind m-3

Mandatory meta data

Zooplankton: survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Mesozooplankton: integrated water column net sampling;

Microzooplankton: discrete sampling

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICES Zooplankton Methodology Manual. (2000). In R. Harris, P. Wiebe, J. Lenz, H.-R. Skjoldal & M. Huntley (Eds.) Available from http://www.sciencedirect.com/science/book/9780123276452

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.8 Fauna Diversity ⇒ Micro and mesozooplankton: abundance, diversity indices

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Micro and mesozooplankton: abundance

Important related indices

Shannon, Margalef, Pielou, Simpson

Property: Frequency

Zooplankton: monthly / fortnightly

As above for macrozoobenthos, Nekton needs to be investigated by a different approach, it cannot be taken at "points" and recruitement as well as population age structure must be taken into account

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station for zooplankton, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

Zooplankton: ind m-3

Mandatory meta data

Zooplankton: survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Mesozooplankton: integrated water column net sampling;

Microzooplankton: discrete sampling

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ICES Zooplankton Methodology Manual. (2000). In R. Harris, P. Wiebe, J. Lenz, H.-R. Skjoldal & M. Huntley (Eds.) Available from http://www.sciencedirect.com/science/book/9780123276452

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.9 Fauna Diversity ⇒ Fauna: List of species, diversity indices

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Species list of selected groups within Annelida, Mollusca, Crustacea

Important related indices

Shannon-Wiener,

Equitability,

Index of Borers (IB)

Property: Frequency

Seasonal

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations along the depth gradient of the seagrass bed

Property: Base Units

Ind m-2

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

The sampling of the motile macro-invertebrates is conducted with a quantitative method: a suction device (air lift) in a fixed standardized area (1m2). A semi-quantitative method is represented by the hand-towed net but it has to be used on largewr areas.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.10 Fauna Diversity ⇒ Fauna: abundance, diversity indices

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Abundance of selected groups within Annelida, Mollusca, Crustacea

Important related indices

Shannon-Wiener, Equitability, Index of Borers (IB)

Property: Frequency

Seasonal

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations along the depth gradient of the seagrass bed

Property: Base Units

Ind m-2

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

The sampling of the motile macro-invertebrates is conducted with a quantitative method: a suction device (air lift) in a fixed standardized area (1m2). A semi-quantitative method is represented by the hand-towed net but it has to be used on largewr areas.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.11 Fauna Diversity ⇒ Fish: List of species, abundance, diversity indices

Definition of Fauna Diversity: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Abundance: Fish

Important related indices

Shannon-Wiener, Equitability, Index of Borers (IB)

Property: Frequency

Seasonal

Property: Precision

Up to species level, at least genus

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Several sampling stations along the depth gradient of the seagrass bed

Property: Base Units

Ind m-2

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

The sampling of the motile macro-invertebrates is conducted with a quantitative method: a suction device (air lift) in a fixed standardized area (1m2). A semi-quantitative method is represented by the hand-towed net but it has to be used on largewr areas.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.12 Within Habitat Structure ⇒ Habitat builders

Definition of Within Habitat Structure: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Habitat builders: Seagrass: (1) shoot density, (2) biomass, (3) leaf standing crop, (4) leaf formation and senescence, (5) flowering

Important related indices

Density classes, plastochrone intervals, Co A

Property: Frequency

Annual, seasonal and monthly

Property: Precision

Shoot density and LSC: measures are performed in 1600 cm2 areas

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Shoot density: ten random replicates for each sampling depth. Plant biomass and phenology: 20 random replicates for sampling depth.

Property: Base Units

No. of shoots m-2 for density;

grams per m-2 for LSC

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Density: 10 shoot counts are performed by trained operators each within 1600cm2 quadrats; the mean value is reported to 1 m^2 .

LSC: 20 shoots are collected, dried and weighed to gram, the mean dw per shoot is multiplied for the mean density m-2.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Structures* ⇒ *Biotic Diversity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.13 Within community structure ⇒ Structure of plankton compartment

Definition of Within community structure: The presence and absence of selected species, (functional) groups of species, biotic habitat components or species composition.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Structure of the whole plankton compartment: abundance and biomass of each plankton compartment

Important related indices

Autotrophic/heterotrophic ratio

Property: Frequency

Monthly/fortnightly

Property: Precision

Up to pico level, all the size fractions of both auto and heterotrophic components

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

Cells I-1 (abundance), mg C I-1 (biomass).

Mandatory meta data

EnvEurope

Life08 ENV/IT/000399

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths)

Method references: specific to sites, not internationally applied

Krause-Jensen, D., Sagert, S., Schubert, H., & Bostrom, C. (2008). Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. [Review]. Ecological Indicators, 8(5), 515-529;

Steinhardt, T., Karez, R., Selig, U., & S

Method references: established, internationally applied

Orfanidis, S., Panayotidis, P., & Stamatis, N. (2001). Ecological evaluation of transitional and coastal waters: A marine benthic macrophytes-based model. Mediterranean Marine Science, 2(2), 20

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.14 Soil ⇒ Sediment characterization

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: SEDIMENT: (1) Porosity (water content), (2) density

Important related indices

Granulometry

Property: Frequency

Yearly

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

oOne

Property: Basic spatial scale

Generally two replicates per station

Property: Base Units

% in weighth of each grain size fraction (measured in phi)

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Corer or just a box-corer in case of sandy bottom, for hard bottom mapping is necessary anyway

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.15 Soil ⇒ Sediment characterization

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: SEDIMENT: Colour of sediments

Important related indices

Granulometry

Property: Frequency

Yearly

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

oOne

Property: Basic spatial scale

Generally two replicates per station

Property: Base Units

% in weighth of each grain size fraction (measured in phi)

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Corer or just a box-corer in case of sandy bottom, for hard bottom mapping is necessary anyway

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.16 Soil ⇒ Sediment characterization

Definition of Soil: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: SEDIMENT: Granulometric fractions (% in weight of each grain size fraction)

Important related indices

Granulometry

Property: Frequency

Yearly

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Generally 3 replicates per sampling site

Property: Base Units

% in weighth of each grain size fraction (measured in phi)

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Hand corers

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Lorenti, M., & De Falco, G. (2004). Measurement and characterization of abiotic variables Biologica Marina Mediterranea (Vol. 11, pp. 38)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.17 Water ⇒ Water: Temperature

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: WATER: Temperature

Important related indices

Water density, Brunt-Vasala frequency, Oxygen % saturation

Property: Frequency

Monthly

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station , considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

International Standard Units

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method
Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths) and or CTD probes

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of Seawater Analysis (3. ed.). Weinheim: Wiley-VCH Verlag GmbH;

Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. Canada Fisheries Research Board Bulletin

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.18 Water ⇒ Water: Salinity

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: WATER: Salinity

Important related indices

Water density, Brunt-Vasala frequency, Oxygen % saturation

Property: Frequency

Monthly

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station , considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

International Standard Units

Mandatory meta data

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths) and or CTD probes

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of Seawater Analysis (3. ed.). Weinheim: Wiley-VCH Verlag GmbH;

Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. Canada Fisheries Research Board Bulletin

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.19 Water ⇒ Water: (1) Oxygen, (2) pH

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: WATER: (1) Oxygen, (2) pH

Important related indices

Water density, Brunt-Vasala frequency, Oxygen % saturation

Property: Frequency

Monthly

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station , considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

International Standard Units

Mandatory meta data

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths) and or CTD probes

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Hansen, H. P., & Koroleff, F. (2007). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of Seawater Analysis (3. ed.). Weinheim: Wiley-VCH Verlag GmbH;

Strickland, J. D., & Parsons, T. R. (1972). A manual of seawater analysis. Canada Fisheries Research Board Bulletin

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) EI component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.20 Water ⇒ Water: Transparency

Definition of Water: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: WATER: (1) Secchi depth, (2) light extinction coefficient, (3) euphotic depth

Important related indices

Property: Frequency

Fortnightly / weekly

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point

Property: Base Units

Mandatory meta data

Method applied (key phrases)

Underwater measurement of photosynthetically active radiation;

Secchi disk visibility or photometer

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

ISO (International Organization for Standardization). (1999). ISO 7027:1999; Water quality -- Determination of turbidity (pp. 10)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.21 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: AIR: Temperature

Important related indices

Temperature

wind speed

Property: Frequency

Continuous/daily

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous/daily

Property: Basic spatial scale

Site

Property: Base Units

International Standard Units

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Meteo stations

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Structures* ⇒ *Abiotic Heterogeneity*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.22 Air ⇒ Basic climate of the site (ranges, interannual variability, extremes, etc.)

Definition of Air: The capacity of an ecosystem to provide suitable habitats for different species, for functional groups of species and for processes. This is essential for the functioning of ecosystems.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: AIR: Wind speed and direction

Important related indices

Temperature

wind speed

Property: Frequency

Continuous/daily

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

Continuous/daily

Property: Basic spatial scale

Site

Property: Base Units

International Standard Units

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Meteo stations

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.23 E_input ⇒ **Total irradiance**

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Water temperature

Important related indices

Surface irradiance/depth irradiance

Property: Frequency

Continuous/daily

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

International Standard Units

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Meteo stations and in situ automatic continuous measurements

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.24 E_input ⇒ **Total irradiance**

Definition of *E_input*: The capacity of ecosystems to enhance the input of usable energy. The term "exergy" is derived from thermodynamics and measures the energy fraction that can be transformed into mechanical work. In ecosystems, the captured exergy is used to build up biomas

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Radiation (direct, diffuse, PAR)

Important related indices

Surface irradiance/depth irradiance

Property: Frequency

Continuous/daily

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

International Standard Units

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Meteo stations and in situ automatic continuous measurements

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.25 E_storage ⇒ **Primary production (seagrass)**

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it

when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Seagrass: (1) leaf elongation, (2) leaf production, (3) photosynthetical active leaf area, (4) P/E relationships

Important related indices

LAI

Property: Frequency

Monthly

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Local

Property: Base Units

mm/shoot/day, mg/shoot/day, m2/m2

Mandatory meta data

Method applied (key phrases)

Leaf punching method has been used to valuate the plant production.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Buia, M. C., Gambi, M., & Dappiano, M. (2004). Seagrass Systems Biologia Marina Mediterranea (Vol. 11, pp. 133-183);

Lopez y Royo, C., Pergent, G., Alcoverro, T., Buia, M. C., Casazza, G., Martínez-Crego, B., et al. (2010). The seagrass Posidonia oceanica as indicator of coastal water quality: Experimental intercalibration of classification systems. Ecological Indicators, 7

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.26 E_storage ⇒ **Biomass**

Definition of *E_storage*: *The capacity of an ecosystem to store energy when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Chlorophyll a

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1, mg Chl l-1

Mandatory meta data

Method applied (key phrases)

Water column sampling , different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.27 E_storage ⇒ Biomass

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Phytoplankton biomass, (2) zooplankton biomass

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1, mg Chl l-1

Mandatory meta data

Method applied (key phrases)

Water column sampling , different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.28 E_storage ⇒ **Organic matter**

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Dissolved organic matter (DOM), (2) particulate organic matter (POM)

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1, mg Chl l-1

Mandatory meta data

Method applied (key phrases)

Water column sampling , different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.29 E_storage ⇒ Biomass

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Macrophytes: (1) Leaf biomass, (2) rhizome biomass

Important related indices

Property: Frequency

Monthly and seasonal

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Local

Property: Base Units

Gram per shoot, mg per shoot;

Nitrogen content: percent of dry weight of leaf tissue

Mandatory meta data

Method applied (key phrases)

Shoot are sampled at different depths, freeze-dried and ground to fine powder in an analytical mill. Subsamples of 2–3 mg were analyzed for total N.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Lorenti, M., & De Falco, G. (2004). Measurement and characterization of abiotic variables Biologica Marina Mediterranea (Vol. 11, pp. 38)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.30 E_storage ⇒ **Biomass**

Definition of *E_storage*: The capacity of an ecosystem to store energy when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Macrophytes: Epiphyte biomass

Important related indices

Property: Frequency

Monthly and seasonal

Property: Precision

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Local

Property: Base Units

Gram per shoot, mg per shoot;

Nitrogen content: percent of dry weight of leaf tissue

Mandatory meta data

Method applied (key phrases)

Shoot are sampled at different depths, freeze-dried and ground to fine powder in an analytical mill. Subsamples of 2–3 mg were analyzed for total N.

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Lorenti, M., & De Falco, G. (2004). Measurement and characterization of abiotic variables Biologica Marina Mediterranea (Vol. 11, pp. 38)

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.31 E_output ⇒ **Reflectivity**

Definition of E_{output} : Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Albedo (diffuse reflectivity of a surface)

Important related indices

Property: Frequency

Seasonal

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1-h

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. Limnology and Oceanography, 11(2), 264-&;

Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic systems. [Article]. Applied and Environmental Microbiology, 49(3), 599-607;

Robinson, C., & Williams, P. I. B. (2005). Respiration and its measurement in surface marine waters. In P. A. del Giorgio & P. I. B. Williams (Eds.), Respiration in Aquatic Ecosystems (pp. 147-180). Oxford (UK): Oxford University Press;

Winkler, W., Beyer, J., & Gnauck, A. (1980). Improvement of the accuracy of prediction of stochastic models of the oxygen concentration in flowing waters. [Article]. Acta Hydrochimica Et Hydrobiologica, 8(1), 107-110

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.32 E_output ⇒ **Respiration**

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Respiration (production of carbon dioxide by living organisms)

Important related indices

Property: Frequency

Seasonal

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1-h

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. Limnology and Oceanography, 11(2), 264-&;

Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic systems. [Article]. Applied and Environmental Microbiology, 49(3), 599-607;

Robinson, C., & Williams, P. I. B. (2005). Respiration and its measurement in surface marine waters. In P. A. del Giorgio & P. I. B. Williams (Eds.), Respiration in Aquatic Ecosystems (pp. 147-180). Oxford (UK): Oxford University Press;

Winkler, W., Beyer, J., & Gnauck, A. (1980). Improvement of the accuracy of prediction of stochastic models of the oxygen concentration in flowing waters. [Article]. Acta Hydrochimica Et Hydrobiologica, 8(1), 107-110

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Energy Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.33 E_output ⇒ Heat fluxes

Definition of *E_output*: Non-convertible energy fractions which are exported into the environment of

the system

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Heat fluxes

Important related indices

Property: Frequency

Seasonal

Property: Precision

See methods

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C l-1-h

Mandatory meta data

Date, Time, location, elevation, method reference

Method applied (key phrases)

Method references: specific to sites, not internationally applied

Method references: established, internationally applied

Carpente, J. H. (1966). New measurements of oxygen solubility in pure and natural water. Limnology and Oceanography, 11(2), 264-&;

Kirchman, D., Knees, E., & Hodson, R. (1985). Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic systems. [Article]. Applied and Environmental Microbiology, 49(3), 599-607;

Robinson, C., & Williams, P. I. B. (2005). Respiration and its measurement in surface marine waters. In P. A. del Giorgio & P. I. B. Williams (Eds.), Respiration in Aquatic Ecosystems (pp. 147-180). Oxford (UK): Oxford University Press;

Winkler, W., Beyer, J., & Gnauck, A. (1980). Improvement of the accuracy of prediction of stochastic models of the oxygen concentration in flowing waters. [Article]. Acta Hydrochimica Et Hydrobiologica, 8(1), 107-110

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.34 M_input ⇒ **Nutrients (input fluxes (rivers, atmospheric deposition)**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) total N, (2) NO3-N, NH4-N

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, representative of the loads actually coming from the watershed to the ecosystem

Property: Base Units

tons/years

Mandatory meta data

Method applied (key phrases)

Water sampling devices (e.g Niskin bottles); Deposimeter

Method references: specific to sites, not internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.35 M_input ⇒ **Nutrients input fluxes (rivers, atmospheric deposition)**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Nutrient input: (1) total P, (2) soluble reactive phosphorus (SPR)

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, representative of the loads actually coming from the watershed to the ecosystem

Property: Base Units

tons/years

Mandatory meta data
reference

Method applied (key phrases)

Water sampling devices (e.g Niskin bottles); Deposimeter

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.36 M_input ⇒ **Organic carbon**

Definition of *M_input*: The capacity of ecosystems to enhance the input of matter with special focus on nutrients, needed to build up biomass and to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-3, mg Chl m-3

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method

reference

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.37 M_storage ⇒ Organic carbon

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-3, mg Chl m-3

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method

reference

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.38 M_storage ⇒ Chlorophyll

Definition of *M_storage*: The capacity of an ecosystem to store matter when available and to release it when needed.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Chlorophyll

Important related indices

Property: Frequency

Monthly

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-3, mg Chl m-3

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method

reference

Method applied (key phrases)

Water column sampling (Niskin bottles), different levels (depths)

Method references: specific to sites, not internationally applied

El Component \Rightarrow El Indicator \Rightarrow Manageable Indicator \Rightarrow Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.39 M_output ⇒ **Sediment** mass and contents

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Sediment mass and contents

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-2 d-1

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Sedimentation traps (for vertical fluxes and outputs), geostrophic currents for advection estimates

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.40 M_output ⇒ **Total Carbon Flux**

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: (1) Dissolved organic carbon (DOC), (2) particulate organic carbon (POC)

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-2 d-1

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Sedimentation traps (for vertical fluxes and outputs), geostrophic currents for advection estimates

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.41 M_output ⇒ Harvesting

Definition of *M_output*: Matter components which are not taken up and "used" by the ecosystem and therefore are exported into the environment of the system (e.g. as suspended matter, sediment loads, erosion)

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Fishing yields

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

One single sampling station, considering the best fit with vertical (water column) and horizontal (site gradients) variability

Property: Base Units

mg C m-2 d-1

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Sedimentation traps (for vertical fluxes and outputs), geostrophic currents for advection estimates

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Matter Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.42 M_efficiency measures ⇒ **Sedimentation**: Accumulation rates

Definition of *M_efficiency measures*: Cycling & nutrient loss reduction: The capacity of an ecosystem to prevent the irreversible output of elements from the system; referring also to nutrient and matter cycling.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: MATTER CYCLING: Increase of sediments accumulated / year in (cm) or weight (g) per cm²

Important related indices

Property: Frequency

Yearly integrated

Property: Precision

To characterise the site

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Single point

Property: Base Units

cm/y

g/cm2xy

Mandatory meta data

Survey date and time, location, site depth, sampling depths, frequency of observations, method reference

Method applied (key phrases)

Sediment core isotopic analysis (expensive, to discuss for budget allocation)

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.43 W_input ⇒ **Precipitation**

Definition of *W_input*: The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Precipitation

Important related indices

Property: Frequency

Continuous/daily

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

m3 s-1, m s-1

Mandatory meta data

Date, Time, location, method reference

Method applied (key phrases)

Instrumental

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.44 W_input ⇒ **River discharge**

Definition of *W_input*: *The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: River discharge

Important related indices

Property: Frequency

Continuous/daily

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

m3 s-1, m s-1

Mandatory meta data

Date, Time, location, method reference

Method applied (key phrases)

Instrumental

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.45 W_input ⇒ Marine currents

Definition of *W_input*: The capacity of ecosystems to enhance the input of water needed to maintain ecosystem functioning.

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Marine currents

Important related indices

Property: Frequency

Continuous/daily

Property: Precision

See methods and instruments

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

m3 s-1, m s-1

Mandatory meta data

Date, Time, location, method reference

Method applied (key phrases)

Instrumental

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.46 W_storage ⇒ Residence time of marine currents

Definition of *W_storage*: *The capacity of an ecosystem to store water when available and to release it when needed.*

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER: Residence time of marine currents Important related indices Property: Frequency** Seasonal **Property: Precision** See model used Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Basin scale **Property: Base Units** days Mandatory meta data Date, Time, location, model reference

Method applied (key phrases)

Instrumental and modelling

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.47 W_output ⇒ Evaporation

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator **PARAMETER: Evaporation Important related indices Property: Frequency** Seasonal **Property: Precision** See instruments and models Property: Time scale (incl. seasonality), temporal resolution All **Property: Basic spatial scale** Basin scale **Property: Base Units** m3 s-1 Mandatory meta data

Date, Time, location, instrument and model reference

Method applied (key phrases)

Instrumental and modelling

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.48 W_output ⇒ Advection

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator

PARAMETER: Advection (Advective transport describes the movement of some quantity via the bulk flow of a fluid)

Important related indices

Property: Frequency

Seasonal

Property: Precision

See instruments and models

Property: Time scale (incl. seasonality), temporal resolution

All

Property: Basic spatial scale

Basin scale

Property: Base Units

m3 s-1

Mandatory meta data

Date, Time, location, instrument and model reference

Method applied (key phrases)

Instrumental and modelling

Method references: specific to sites, not internationally applied

El Component ⇒ El Indicator ⇒ Manageable Indicator ⇒ Parameter

(I) El component: *Ecosystem Processes* ⇒ *Water Budget*

(II) Following headline: Basic El Indicator (Table 1) ⇒ Manageable Indicator

10.4.49 W_output ⇒ **Outflow**

Definition of *W*_output: Water which is not taken up or not "used" (anymore) by the ecosystem and therefore is exported into the environment of the system (e.g. by evaporation, transpiration, interception, runoff).

FACTSHEET FOR PARAMETER(S) targeting at the manageable indicator
PARAMETER: Outflow (marine currents)
Important related indices
Property: Frequency
Seasonal
Property: Precision
See instruments and models
Property: Time scale (incl. seasonality), temporal resolution
All
Property: Basic spatial scale
Basin scale
Property: Base Units
m3 s-1
Mandatory meta data

Date, Time, location, instrument and model reference

Method applied (key phrases)

Instrumental and modelling

Method references: specific to sites, not internationally applied